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Photograph of a blunt body in a multiple arc
jet wind tunnel showing the ionized shock
layer about the body. (Mach no. 7)
Courtesy of: T. A. Barr, Jr., U. S. Army
Missile Command, Redstone Arsenal, Alabama,
1969.

Photograph of a cross section of a unylon-
phenolic resin ablator. Courtesy of;
C. W. Stroud, NASA TN D-4817, 1968.
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ABSTRACT

The conservation equations for a multicomponent, radiating,
chemically reacting fluid in local thermodynamic equilibrium are
derived. From the conservation equations the thin shock layer
equations are developed. These equations appropriately describe the
flow in a shock layer produced by a blunt body during a hyperbolic
entry, atmospheric encounter. Special attention is given to radiatiom,
chemical reaction and mass transport fluxes. Stagnation line equations
are derived from the shock layer equations by taking appropriate limits
and are discussed from a mathematical view point as initial conditions
for the shock layer equations. Boundary conditions for these equations
are derived and discussed in the light of ablator response coupling

with the flow-field.
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NOMENCLATURE ¥

English

O o m o ol

Property flux vector (property x 1)/ @3 x o)yt
Planckian radiation intensity (m/t2 x no. of particles)
Property generation term (property)/(L3 X t)
Generalized property per unit mass term (property/m)

Mass fraction (mass of i /unit mass of fluid)

_A _ XM _ M _
G= T M T T 2.Ci =

Velocity of light (L/t)

Specific heat at constant pressure (L2/t2 x T)
Multicomponent diffusion coefficient L2/t)

Effective multicomponent diffusion coefficient w?2/t)
Thermal diffusion coefficient (m/L x t)

Binary diffusion coefficient (L2/t)

Stagnation internal energy (mL2/t2)

Strain tensor (defined in Eq. 2.18) (1/t)

Diffusion factor for specie i

Velocity function, Lb/us

Photon distribution function (no. of photons x t)/L3
Gibbs free energy (mLz/t2 x mole of j)

Gravitational force vector acting on a unit mass of specie i (L/tz)
Enthalpy function, fi//fis

Total enthalpy, H = h+ \-/2/2 (L2/t2)
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Static enthalpy, iﬁ = KJ + E%b (Lz/tz), also Planck's constant

hhhz,h3 Stretching functions in the 6}, §é, 63 directions respectively®

Ji
Jl

= X

O mp® T S

£
Py Ef” :éDO ‘530 :Ul

Mass flux vector of speciesi (m/LZ x t)

Radiative emission term defined in Eq. 1.23 (m/t? x L)

Coefficient of thermal conductivity without diffusion effects (mL/t3 X t)
Ordinary coefficient of thermal conductivity (mL/t3 x T)

Boltzmann's Constant (mL2/t2T)

Generalized transport coefficient (property/L x t x driving force)
Molecular weight of species i (mass of i /mole of i)

Number density (particles/L3)

Molal volume (moles of i /13)

Molal density (total moles/LB)

Unit normal vector

Static pressure (m/L x t2) or (r/1L2)#

Prandtl number, Cp/~L/k

Radiative stress tensor defined by Eq. 1.12 (m/L x t2)

Internal energy per unit mass,’including chemical energy (L2/t2)
Radiative heat flux vector defined by Eq. 1.22 (m/t3) or (E)L2 b4 t)#
Convective energy flux to a surface (m/t3)

Radiative energy flux to a surface (m/t3)

Diffusional energy flux vector defined by Eq. 1.13 (m/t3)

Body nose radius (L)

Reynolds number, ps,o Ue R/IJ. $,0
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Uy
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Yi

Universal gas constant (mLB'/t2 x T x no of moles)

iR/IM , mean molecular weight weighted gas constant @2/t2 x T
Cylindrical body radius defined in Fig. 3.1 (L)

Induction or resistance enérgy generation term defined by Eq. 1.12 (Lz/t3)
Thermodynamic temperature (T)

Time (t)

Freestream velocity (L/t)

Spectral radiant energy density (m/L xt x no. of particles)

Component of V in the €| direction (parallel to the body surface) (L/t)
Volume (L3)

Velocity vector, Ui + Vi + Wk (/t)

Component of v in the 52 direction (normal to the body surface) (L/t)
Component of \7 in the §3 direction (L/t)

Body oriented coordinate corresponding to €| @)

Body oriented coordinate corresponding to fz )

Mole fraction of speciesi, Y; = n/nf , XY, = |
i

Body oriented coordinate corresponding to £3 ¢H)

Volumetric absorption coefficient, effective (L2

x no. of particles/L3)
Generalized property, (mass, momentum, or energy/L3)
Del operator (defined Tab. 3.1) (1/L)

Shock detachment distance (L)
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Transformed shock detachment distance

Exponential integral function of order [l defined by Eq. 4.51
Difference between the body and shock angle € = 9— (P (radians)
Characteristic interaction energy (a Lennard-Jones parameter) (mLZ/tz)
Distance along an arc (L)

Dorodnitzyn variable

Body angle (radians)

Integral of fz, (where f is the velocity function)

Integral of f , (where f is the velocity function)

Spectral radiation intensity (m/t2 x no. of particles x no. of steardians)
Unit tensor

Direction cosine

Absorption coefficient (L2 xno. of particles/L3)

Local body curvature (1/L)

I+ KY

Diffusional or radiative flux divergence (see Eq. 4.1) (m/L x t2)

(- 2AHK) @Lxt)

ZY, Mi mean molecular weight of the mixture (m of mixture/mole of mixture)
i

Ordinary viscosity (m/L x t)

Bulk viscosity (m/L x t)

Frequency (1/t)

Orthogonal coordinate® ; nondimensional ¥~ coordinate when not subscripted

Density (m/L3), p = n+M
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q
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Qs

ij

Wy

Partial density of species i, Pi = niMi (m of i/L3)
Density ratio across shock f%%/?é
Radiative absorption cross section (L2)
° .
Collision diameter of specie i,/\ (L)
Optical depth at frequency V
Viscous stress tensor defined by Eq. 2.18 (m/L x t2)
Shoek angle (radians)
Generalized driving force (driving force/L)
Unit vector in the direction of photon propogation
Solid angle (stearadians)

Collision integral of colliding species i and j

Generation of species i (m/L3 x t)

Subscripts

a

Atmospheric (sea level) quantities
Edge conditions

Species i

Normal component

Tangential component or total quantity
Wall quantities

Stagnation line quantities

Directions corresponding to positive EI’ 527 53 respectively

Freestream conditions

Quantities immediately behind the shock




Superscripts

D Diffusion

S Gravitational

p Pressure

A 0 or 1 denoting two-dimensional or axisymetric respectively (an exponent)
T Thermal

* Denotes dimensional variables in Section IV

0 Standard state quantity

Script letters

é¢ Partial molal enthalpy (mL2/t2 x moles of i)

l; Molal eathalpy (mL2/t?/ x total moles)

Symbols not listed are defined where used.

4+ Abbreviations mean: m, mass; L, length; t, time; T, temperature; F, force;
E, energy.

The product h;&i has unit of L.
# Note g, = (mL/t2 x F) and J = (FL/E) have been used.
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SECTION I

CONSERVATION EQUATIONS OF A MULTICOMPONENT, RADIATING, CHEMICALLY REACTING FLUID

The conservation laws for mass, momentum, and energy will be presented
for a continuum, multicomponent fluid whose internal degrees of freedom are in
thermodynamic equilibrium. The assumption of thermodynamic equilibrium im-
plies that no matter how small a volume of fluid we are interested in there
are enough molecules within the volume to give meaningful average properties
and that regardless of the flow velocities of interest a temperature may be
ascribed to the fluid. This is roughly equivalent to assuming the first

postulate of nonequilibrium thermodynamics, see Fitts Ref. 1.1,

A general property balancg_gan be made on an element of volume *f
moving with the stream velocity \/ similar to that of Brodkey, Ref.1.2. The
property ( mass, momentum, or energy ) per unit volume is desigefted by ﬁ?.
The flux of a property through a control surface is denoted by B (property x
length) / (volume x time), and the generation of a property within the con-
trol volume is denoted by ES(property) / ( volume x time ). The differential
form of the general property balance can be written in terms of the above def-

initions.

%@- + VgV + VB - B = 0 Ca
As stated the general property balance equation was derived for a mov-
ing control volume. For a control volume stationary in space there is a con-
vective flow through the control volume which is identical to the motion term
asgociated with the control volume. This means that if the general balance
is derived fyr a moving control volume it may be used for a fixed contzgl vol-
ume, with E3 maintaining exactly its same definition. This allows E3 to
be interpreted as a diffusive flow. This is obvious for the moving control
volume, but the practice of lumping all kinds of effects inEg this elusive
flux term for a fixed control volume effectively redefines E3 as a catch-all.
Therefore, the general balance equation is stated in the form for a moving
control volume, but it is fully intended to be used to describe a station-

ary volume in space.

The general property balance Eq. 1.1 can also be written:




% +V-v8 + BV-V + V-B - B = 0 (1.2
(1) (2) (3) (4) (5)

The meaning of these terms is:
(1) The accumulation of ﬁg within a control volume (C.V.)
(2) The convective flow of ﬁg thru the C.V,.
(3) The dilation of the flow thru the C.V., i.e, the change of l3~
when the fluid is compressed or expanded
(4) The diffusional flux into and out of the C.V.
(5)  The generation of [3 within the C.V,

Using Eq. 1.2 and specifying /3, E3, and 'EB we now can write the con-
servation equations. Consider first the conservation of mass by specifying
B = P (mass / volume), B = lB = O '

Substitution into Eq. 1.2 yields

Continuitz:

-g—'t-'i + VeVP + PVV = O (1.3)

Before proceeding to the other conservation equations let us rewrite the gen-
eral property balance equation in another form by substituting ﬁ; = bf)into
Eq. 1.2, By using this substitution and noting the continuity equation ap-
pears as a product of b, the general property balance relation can be ex-
pressed as: -

Db B-RB =
'DDt + VB - B 0] (a.s?t

This equation will be used to evaluate the remainder of the conservation eq-

uations.

Consider now species conservation by specifying

b = (:i

w
I
&

B= &
where

23 =0

" Db ob , ¥
is the substantial derivative of b which equals + V'Vb

Dt ot
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Substitution of the above relations into Eq. 1.4 yields

Species Continuity:

Let us accept the second postulate of thermodynamics of irreversible processes
which states that if the fluid is not too far from equilibrium, fluxes and cur-
rents are linear homogeneous functions of the driving force. Using this
postulate the mass flux vector of specie i, Eq. 1.5, can be written as the

sum of contributing vectors.

Ji = (LX) + (Lpp Xphi + - | (1-6)

where

L|m= Transport Coefficient
Xm= Driving Force
and where subscript " D " indicates diffusional transport coefficients.

The number of necessary terms to consider can only be discussed in ref-
erence to a particular application. Four terms are stated below from Bird et

al,, Ref. 1.3, for consideration.

B} PIRT ZM M,D, [Y|kz= a_l. P)rvy, vyk] 1.7
K

5 I¢j,k

(L..Y. %= Ji(D)

(LX) = Jim = "DT VinT (1,8)
Fy = TP _ A/ |
LaXoh= T = sz TMMD, [y, (W~ F) ve]

(LiaXa) = Ji(g) - ;lRTZM M;D; ijM

G-vx9)] oo

where

rh = Concentration in total no. of moles/volume ((: in Ref. 1.3)

£
i

Mole fraction (){i in Ref. 1.3)

I3




Gibbs' free energy

£
1

Multicomponent diffusion coefficient

O
]

Thermal diffusion coefficient

Eq. 1.7 expresses the mass diffusion vector. Since the driving force
is of the same measure as the flux, they are called "conjugate". The conjug-
ate transport coefficients,l_ao, are the largest, i.e. mass is diffused pri-
marily by mass concentration gradients. Eq's. 1.8, 1.9, and 1.10 represent
the mass flux vector contribution from thermal diffusion, pressure diffusion,
and forced diffusion respectively. There are also fluxes due to inertia and
viscous terms, but they are very small, see appendix in Fitts Ref. 1.1, Elec-

trical and magnetic effects can also create fluxes.

The definition of flux as a linear fuanction of coefficients and poten-
tials and the realization that fluxes are tensors of various ranks leads one
to speculate on what type of cross effects can exist. Curie's theorem states
that "fluxes whose tensorial characters differ by an odd integer cannot inter-
act in isotropic systems," Ref. 1.1. This means that the mass flux tensor and
the heat flux tensor which are both vectors are not coupled to the reaction
rate tensor (a scalar), or the momentum flux tensor (a second order tensor)
but may be coupled to each other. Also, it should be observed that momentum
.flux tensor either as a second order tensor or in contracted form as a scalar

may be coupled to the reaction rate tensor.

With the foregoing information in mind consider the conservation of

momemtum. For substitution into the general balance equation

b
B
B

I
®
N
I
<

[
M
o
kel

Using Eq. 1.4 for momentum conservation yields
Momentum:
DV - %, .S -
Dy T Ve (T-IP + PR)-«;Pigi = 0 (1.11)

Note that in the above equation the radiative pressure tensor, F)R , is in-

cluded for completeness. This term is negligible for practically all non-

14



nuclear problems.

Let us now apply the general balance equation to conservation of energy

by specifying

b

=2
+.lZL + Z,OlVo gi = [ (energy / mass)

-B- = qD (enexrgy / volume) (length / time)

B = V'aR Ve (T—IP+ PR 2_9-
i
— Sp (energy / volume - time)

generation by radiation + pressure tensors + external forces
+ heat sources internal to the C.V.; i.e, induction heating,
resistance heating, etc.

Substitution of the above into Eq. 1.4 yields the total internal energy form

of the energy equation

PBE + Ve, + VoG, - Ve(T-IP+ PV
2Gd; - SP =0 (1.12)
where

qD = diffusional heat flux vector

EiR = vradiative heat flux vector

2:@;.3}:: heat generated in the system by a gravitational field

Let us investigate further the diffusional and radiative  heat flux
vectors. ‘“Again imposing restrictions from thermodynamics of irreversible

processes, the diffusional heat flux vector may be written as a sum of vectors

Gy = (LX) + (LpR) + - 1.1

where

!aTgY} = :ilﬁij} - l(‘7-r

== ener transport due to the Dufour effect
LraX2 &y P




The L—Tlsq term is the conjugate term for this flux vector. It should be
noted howevef that the right hand side definition is an arbitrary one. The
Dufour effect arises due to the consideration of the Soret effect in mass
diffusion. Additional cross effects from other coefficients and potentials

will not be considered.

Radiative transfer of heat is propogated in an entirely different
manner than diffusional heat transfer. Diffusiohal heat transfer mechanism
depends on gradients in the gas, such as temperature, species, pressure or
external forces as pointed out by Planck, Ref. 1.4. Radiative transfer of heat
is in itself entirely independent of these gradients in the medium fhrough
which it passes., 1In general, radiation is a far more complicated phenomenon
than diffusional heat transfer. The reason for this is that the state of the
radiation at a given instant and at a given point of the gas can not be repre-
sented by a single vector as the diffusional mechanisms can., All radiative
energy rays which at a given time pass through the same point in a gas are
independent of each other. Therefore, to specify completely the state of the
radiation at a point the radiation dintensity must be known in all directions

which pass through the point under consideration.

’Special attention will now be given to the development of the radiative-
flux and flux divergence terms which are needed in the evaluation of energy
‘conservation., Starting with the basic concepts of radiative transfer in an
absorbing and emitting medium, Ref. 1.4 and 1.5, a definition of the spectral ra-

dient energy density is developed.

Let f(V,-ﬁQh’f)dVd\Qa be the number of photons in the frequency inter-
val ¥V to V 4 dV, contained at time 1 4n the volume element d’v‘ located
about the point T: and having a direction of motion within an element of solid
angle d\Q: about the unit vector g; . The function f is called the dis-
tribution function. For this definition to be meaningful the linear dimensions
of the volume element must be larger than the largest -wavelength Q/bk

Each photon possesses an energy flv . Therefore, the spectral radiant

energy deﬁsity may be defined as the radiant energy of frequency ¥V included

in a unit spectral interval and contained in a unit volume at the point [

and at the time T by:
U (7, 1) = hy/ fadQ (1.14)
4 41 ‘
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In a like manner, the spectral radiation intensity can be defined.
First recall each photon possesses a velocity equal to that of light €. There-

fore the quantity

hve f(u,T, Q1) dv dQd (1.15)

represents the radiant energy in the spectral interval CfV passing through a
unit area in a unit time in the direction within the_fplid angle CYSZ about
SZ, . The area is located at [ and is normal to Sl, . This statement is not
necessarily obvious. 1In order to clearly indicate how and what area is located
at point‘Tr let us follow the derivation of the spectral radiant energy density
given by Planck Ref. 1.4.

Consider an infinitely small element of volume Cf*ﬁ at the point
which has an arbitrary shape Fig, 1.1, 1In order to allow for all rays to pass
through the volume C’*ﬁ we can construct about any point.F of Cf\f a sphere
of radius O . The radius O 1is selected to be large compared with the linear
dimensions of Cf*f but still so small that no appreciable absorption or scat-
toring of radiation occurs in the sphere. Each ray which reaches Cj*f must

then originate from some point on the surface of the sphere,

Let us determine the amount of energy contained in Cf*f' which originated
from an element of surface area CfO . The surface area is chosen such that its
vlinear dimensions are small compared to those of Cf*% . Consider the cone of
rays which start at a particular point on Cfa and meet the volume tf**.

This cone consists of an infinite number of conical elements with a common ver-
tex at a point on 670 each cutting out of the volume Cf*f' a certain element
of length S . The solid angle of such a conical element is [&l\/érzwhere [&l&
denotes the area of cross section normal to the axis of the cone at a distance O

from the vertex Fig. 1.1.

In order to find the energy radiated through an element of area let us
first define hVCf

L, (F,Q,1) = hvcf (1.16)

which is called the spectral radiation intensity. Using Eq. 1.15 and 1.16 the

monochromatic energy which has passed through CYO and is in Cy\f is:

I,dQ (s/c)da = hvcfadQ(s/c)aa (1.17)




where d\Q, =-—Z-?-—'_2—-— and § is the path length in dV The energy
which enters the conical element in Cf\f spreads out into a volume Z&l\S.
Summing up over all conical elements which originate in CYO and enter C/*f

yields
_I_cy_go_'_%ZAAs - _Icl.Q'_Q adN = -I(-:‘-‘-dﬂa’v (1.18)

This represents the entire monochromatic radiant energy .ontained in volume
Cf\f resulting from radiation through the element of area CYO . To determine
the total monochromatic radiant energy contained in Cy\f we must integrate
over all elements of area Cfa contained in the surface of the sphere., For
the procedure of this integration observe Fig. 1.2. 1In this case the incre=
ment. in solid angle cfSl==-E;§ which corresponds to a cone with a vertex at

I .  Integrating the right hand side of Eq.'s 1.18 yields the total energy:
*‘C—-fIVdQ,

The monochromatic radiant energy density is obtained by dividing by Cy\f

Uy = -%-.[Ivdﬂ | (1.19)

Since the radius O  does not appear in Eq. 1.19 we can think of Iv " as the

intensity of radiation at the point I itself or the intensity of radiation

passing thru a unit area at I in the direction &2|. This clarifies a diffi-

cult concept which is avoided in many derivations,

From the definition of Iv it follows that the radiation heat flux is

a vector of magnitude

Wi = [cav = [[Loaar .20

in the direction SZ; of photon propagation. %Let the normal to any surface

thru point Tr be called N . Therefore the magnitude of the heat flux passing

thru a unit surface area normal to [l from photon propagation in the I direc-

(f+3) = %FAN = [[A-QILEQHdQ oo

I8




Finally the radiative flux vector can be written

_ o eam .
Gt = [ L 1,(70,1) 0, dQ av .22

¢ \y=0 20

Therefore <1R is defined at any point.ﬁ and time 1 in space.

For the use of the radiative heat flux vector inlfpe energy equation,
it is desirable to be able to calculate a component of qR in any coordinate
direction of an orthogonal coordinate system and to calculate ‘7 ’zia. ‘These
calculations may be accomplished in a more expeditious fashiom by first writing

the equation of radiative transfer,

The radiative. transfer equation states that the rate of radiative
energy accumulated in a volume element plus the rate that it flows thru the
element equals the rate of generation within the element. The generation
of radiative energy is accomplished by emission and absorption. Thé general

property balance can be used by defining
B = L
B O
C2
B = c[d 1+ 5551 - KL,
Substituting into Eq. 1.2

i%%l + (C:Ki|)° ‘7]Q + IVY7' (C zi]) =

c?
C[le (r+ ko3 I.) — KIV] (1,23)
using the vector identity

(Cﬁ|)'v1v + Ivv°(cﬁ|) = (C\Q,|)'VIV
&+ cavy] = w0+ 5L) - KL aw

which is identical to the expression given by Zel'dovich and Raizer Ref. 1.4.

In order to simplify Eq. 1.24 the following observations are made ., The‘emission

I9




term \ﬂv can be expressed

Jy = ayBy . (1.25)

by»uéing Kirchoff's law and assuming local thermodynamic equilibrium. Note that

the effective volumetric absorptioncoefficient

a = K [l - exp(“hv/ch)] (1.26)

is the product of the absorption coefficient and the induced emission term.
Therefore the emission term L"v has both spontaneous and induced emission taken

into account. The spontaneous emission term is the Planck function.

2hy3

|
B, =
VT T2 e (chy/ReT) -
Using these definitions Eq. 1.24 can be rewritten as:

19l
C ot

(1.27)

+ ﬁ|°VIv = aV(Bv"—Iv) | (1.28§

If the radiative transfer Eq. 1.28 is multiplied by Cf&l and integrated

over all directions the conservation of radiation equation is obtained

ol

31 + V-ﬁR'v = cav(lUyp - U | (1.29)
where
Uy = f.Z%B__v_

Let us assume

01Uy | oI,
st = /5@ = o

since € is very large. Then we may solve Eq. 1.26 for the radiative flux div-

ergence.,

— e ad am
Veg(® = [a (4ver - [1.(Fo9) av (1.30)

The contribution of the radiative flux divergence term in the energy equation

has important mathematical ramifications. It should be noticed that the flux

T 10




divergence term is evaluated by integrating over all space. The other terms
in the energy equation are differentials calculated locally. The rad-
iative flux divergence term therefore makes the energy equation an integro-

differential equation.




cone of rays

conical element

Nonabsorbing
Nongcattering
region

Nonabsorbing
Nonscattering
region¥

Fig. 1.2 Geometric relations for calculation of rediation to CY**.

Fry v C 0. 5. ,
Radiation in minus S2| direction to the unit area equals the radiation from the
the unit area in the minus SZ: direction.,
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SECTION ITI

CONSERVATION EQUATIONS IN GENERAL ORTHOGONAL COORDINATES

From the previous section we have a vector formulation of the basic
conservation equations for a reacting, radiating, conducting fluid. Most
flow problems are represented by the conservation equations in orthogonal
coordinates. In this section the basic conservation laws will be written
in general curvilinear orthogonal coordinates. This permits one to sel-
select a useful coordinate system for a particular problem and thus de-
termine the appropriate coordinate stretching functions. Substitution
of the stretching functions into the conservation equationé in curvilinear
orthogonal coordinates will yield the appropriate governing equations for

the problem of interest.

Table 2.1 presents a set of vector operations in vector geometry not-
ation. By using the information in this table we are able to write the con-
servation equations in curvilinear orthogonal coordinates. The statement of
these equations have been made in part by Back, Tsien, Brodkey, Ref's: 2.1,

2.2, and 2.3 respectively, and others.

The conservation equations can be stated in time independent vector

form as follows.

Global Continuity:

VePy =0 | | (2.1)
Species Continuity:

Ve (fﬁ‘?) + Ve :E

= W (2.2)
Momentum:
PVTIV + V(2-TP +B) -~ 263 = 0 o
Energy: (Total internal energy per unit mass)

I
|

|

-

PIV-VIE + Vo(@y + Tp) + £33 - Vol

+B)V - 8P =0 2.4)
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Energy: (Total enthalpy per unit mass)
PIVVIH + Ve(@+ T) + 25T, - Vel
P)eV - Sp =0 2.5)

For the purpose of writing the conservation equations in curvilinear

4

~il

orthogonal coordinates, the coordinates are chosen to be f‘, E , and 63
corresponding to E', 62’ and (53 of Tab, 2.1 respectively. The elements of
length in the respective coordinate directions are hIEI' h2€2' and h3€3

such that a differential arc length can be expressed as

(@F = hde) + Re) + hiae) 2.6

where hl’ h21 and h3 are called the "stretching functions'" in the respective
coordinate directions. In the following equations U, V, and W are the ve-

locity components of V in the direction of increasing €l7 €27 and ES‘

Applying the \YJ operator from Tab.2.] the global continuity equation

becomes

| 9 (hohsPu) | 0 (hhsPv) 3 (hhPw) ] _
h|h2h3[a€g23 + 0§2l3 + a§3'2 ] 0O «.n

In a similar manner the species continuity equation can be written

I a (hzh P|U) _i_(__h'h3p|\/) Q_thth;W)
A A A
L_[2{0hsd) . Q(havhal Q_(_h.hzdg,;,)]

hh.h; LOg, T 9g, 0¢&,

wi = 0 (2.8)

In order to evaluate ffll_e above equation the components ‘Ji, g Ji,gz,and Ji’§3 of
the mass flux vector \J| must be specified. The mass flux vector for a wide
range of fluid problems consist of four parts

— _ =D —(P —( —(T)
= \Ji + \Ji + \Ji + \). (2.9)

i
=7 (D) , , . TP ‘ T (9)
represents concentration diffusion, J, pressure diffusion, Ji

where Ji
T (T

forced diffusion, and J; thermal diffusion. 1In the present derivation we

will restrict our attention to thermal and concentration diffusion. These

modes of mass transport are the dominant ones for most fluid dynamics problems.
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The expressions for there two mass flux vectors are

2
=0 _ _ni &
J¥ = = Y MMy [y Z ey VY] @
I=1 k#, 1#jk
G = =D VinT @
The transformed components of the above equations are
o _ A
die, PIRT Z Mi M, D u[Y Z Vi h, d&.]
k#, 1#],k
o _ 1 9%
Ji’§2 PIRT z M M DU[Y z aYk TZ;JY}: hz aéz] (2.10)
k#j n
o _ nf < >~ (96; 10X
Jl,§3 PRT %Mi M; Dy; [Yj kz:' (B_Vk’)'ﬁ‘a‘ﬁ hs 663]
, T
Jm = ZBi 9(n T)
b  9¢
~Di a(n T)
=
J'rgz he 06 (2.11)
Jim —Di a(n T)
ha 653
For substitution into the species continuity equation
Ji’§| = 'Ji(aDg)| + J|:§|
Ji,gz = ‘Ji(,?a"‘ Ju,gg (2.12)
gy, = gyt Jie
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This completes the necessary operations to explicitly write the species contin-

uity equation in general orthogonal coordinates.

Before writing the momentum and energy equatiouns in general orthogonal
coordinates the radiation pressure tensor and external force field terms are

dropped. The resulting vector form of the two equations are

Momentum:

P(V-VIV + Ve(F-TP) = O BCEDS
P(VeVIH + Ve(qQy+ Gg) — Ve(F)-V = 0 @
If the need to account for the additional effects should arise, the appropriate

terms could be added to the governing equations in an analogous manner to the

terms which will be considered.

Using the definitions in Tab. 2.1, the momentum equation can be written

in the three‘orthogonal directions.

E‘ — momentum:

Udu . v ou , w du . w dh , uw dh
mo& T h, 0& T Ths 965 | hihe 06 T hhs 0%




EZ = momentum:

ugdv , v ov . W v  uv ghy , vw 0hp
hl a& h2 a h3 a€3 h|hg a€| 2h3 653
_ w2 oh _ w2 dhy 1 19P

h,h, 5€2 hahs 0¢&2 P h, 0& (2.16)
_ | [ | (a(hzh3rlz) + L(_hlhaTZZ) + _(_h;hzraz))

P Lhhyhs 18¢ & 0&;

€3 -= momentum:
udw . v ow . w 9w _ wv dhy | wv dhs
h, 9¢, h, 9¢, hs 0&s 1hs 0§ 2hs 0&;
St oh _ wgh, 11 2P
hl h3 afa h2h3 653 P h3 553 (2.17)
_ [ I d (hzh373) + 0 (hyhsTz3) + a(h!hzTaa))
P Lhhyhg 10§ 0¢, - 0g

+ B 0y | ms by o7y oh Ez__flf_‘z] -0
hihs 9¢, hohs 08, hihs 0&3 hzhs 0&;

In the above equations, the subscripts 1, 2, and 3 in the symmetric stress
tensor denote the coordinate directions &, 52, and 53 respectively. 1In order
to evaluate the three momentum eQuations the components of the viscous stress
tensor must be defined. For a Stokesf fluid the stress tensor is defined by,

Ref. 2.3, in terms of the rate of strain tensor €.

T = f(8)

The simplest form for this equation in three dimensions is

7= AT + B + CE.3 | (219
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For a Newtonian fluid

A= —(3K - VY, B= +h, C=0
The stress tensor may now be written as
T = \V-V + HE (2.20)
The components of the stress tensor are
T = AVeV + Hey \
T, = AVeV + H€x } (2.21a)
T3 = AW eV + Hes )
T, = Ty = Hée )
Ty = Ty = Hez $ (2.21b)
Ty = Typ = HEz /
Which may be written
= A d (hyhsu) Q__(blhsV) _a_S_h. th)
T h.hzhs[ag. A t 3, ]
[ ou . v oh w_oh 7
+ 2f‘[hﬂ.a, MY TR 53] @29
— A d (hyhsu) _@_(_Ds hsv) | _a_(_"_"n haw)
Te2 = h.h2h3[a€. Y t oG ]
1ov . w dh u_gdh
* 2*‘[hza =t e dE, T Tuha ag,] @29
_x ralhhsu) | alhhg) d(h,hw)
s = hlhgh-ﬁ[agI T 9, T 3¢ ]
JJiow o u odhs v_ dhs ,
+ 2“[h3 52, T R 0f, T Tohs 0 2] (229




(2.25)

om e ARG Bkl

h, 3¢ \hy hy 92, Ih
_ . — ufho (u hsd  (w)] .
w® = W= B (h. * h 9€ (hal- (2262
—_ _ h3 0 W Jlg.éz__ VI
W= = AP asz(hs) T h.og, \hyll -2

With the preceding definition of the stress tensor, the momentum equations be-

come three equations expressed in the three components of the velocity vector.

The total enthalpy form of the energy equation Eq. 2.14 may be written in
general orthogonal coordinates by noting the form of the three operators expressed

in Tab. 2.1.

3 (hzhs%,)

uoH . voH | woH] = _-l

[hl 0{. * hz afz ¥ hs ‘53] hl hz h3 [ afl

+ d(hhs9p2) + o(hh9ba)1 _ | " 9(hoh30gy)
652 a€3 - h| hz h3 L af,

L lhhyGea) | 3Gy | 1 T afhhs(mu+ TV + TW)
afz 553 . hyhahs L 9§
i_{b, hy (TU+ T2V + 732W _i_, (ToU+ ToaV + T33W)}

* % I3 | e

The components of the shear stress have been defined in the discussion of
the momentum equation, Therefore only the components of the heat flux vectors

are left to be defined to provide a complete statement of the energy equation.

The heat flux vector as handled previously will be described as the
sum of the diffusional and radiative heat flux vectors. The diffusional heat
flux vector can be expressed as a function of the mass flux vector by simple

manipulation of the equation given by

% = KT + ThJ - NchZ v( :

I1 7




where kl is not the ordinary thermal conductivity coefficient. The usual form
of the diffusional heat f£lux vector is written in terms of diffusion velocities
or mass flux vectors. This form eliminates §7 3Ll from the preceding equa-
tion and adds a term to k, yielding the ordinary thermal conductivity. This
step also introduces the binary diffusion coefficient into the Dufour effect
term. Following Hirschfelder et. al.,, Ref, 2.4, and substituting for the

diffusion velocities yields:

G = —kVT + XhJ

I J I _ Ju ¢
N@%M Dy (M, ~ YW (-2

where m)n is the binary diffusion coefficient

_ 3M+M)P
lDij - '6N M Mj (n) | | (2.30)

The diffusional heat flux vector contains terms which respectively represent
conductive energy flux, diffusional energy flux, and diffusion-thermo (Dufour)
energy flux. The Dufour effect is kept in the above equation to be consistent
with keeping the Soret effect in the species continuity equation, At this
>point it is appropriate to point out that the thermal conductivity in-the con-
ductive flux term is in general a tensor. For the case of an isentropic fluid,

the conductivity reduces to a scalar, This is the form used in the diffusional

energy flux vector above.

Having stated the vector form of the diffusional heat flux vector, the

components needed in the energy equation can be expressed.

- kol
B, = h, 98, + Zhidi,é.

_P Jig _ _Jdig
N2 Z,§ ID,, (v; M T VM 23D

# The perfect gas equation of state has been used to replace k 1-1n these eq-
uations from Ref. 2.4 with Eyqq
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k aT

92 _EEEZ + Zhidi,gz
JL§2 - _JL§2 (2.32)
z;’;é% M IDlj ML hﬂi)
_ _koT
U = |haé'+ Zmdﬁs
Ni OF | Jigs _ _Jigs ,
ZHZZ M Dy %M, YiMi) (2.33)

where the components of the mass flux vector used in the above expression are

defined in the discussion of the species continuity equation,

To calculate the components of the radiative flux vector (JR g where

g. is an orthogonal coordinate, let us integrate Eq. 1.27.

Gr(F) = J VeTaar

Note that V' qR is a scalar independent of coordinate system,

components may be written:

= [(v-Tohag

qugi

or by substituting from Eq. 1.27

fE(Vu

= a
IR, §(ro)f '
[ e
g(fo)

4T B,

qR,a =

47 B, — ]; va

47

s = [ [ e, [ 1(F)

I1 9

-—Jc4ﬂiv(

[17+ TalhEidk, + hiZdE, + hiEsos)

F)dQ) dvhid,

dﬂ.) advh,d§,

oQ| dvhyd,

(2,34)

The flux

(2.35)

(2.36)

(2.37)

(2.38)




In addition to the general conservation equations an equation of state

is needed to specify the relationship between pressure and temperature, A

reasonable approximation for the thermal behavior of a gaseous mixture is the

ideal gas equation .of state.

P = mRT (2.39)

Let us rewrite this equation in several forms which might be of help in fur-

thering our development. These expressions follow those of Scala, Ref. 2.35.

P = PRT | ' (2.40)

where

IR

R =

It follows that

R

_fl)_z,oi{ﬁéi = YCR = IRZCVMi 2.41)

Lsmm = M ' -
nt;n.Mn, 2YiM = > Com | (2.42).

M

Other forms of the ideal gas equation of state are
P, = ART )

M RT

= Nik.T

Nk.T ‘ vhere E‘Ni = N )

I

Y (2.43)

U O
|

o
!

This last expression has been used previously to state Eq.'s 2.29 and 2,30,
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Vector QOperation

Vector, a =

Scalar or_dot
product, a*b =

Vector or_cross
product, a x b =

Gradient of scalar,
VU =

Gradient of vector,
va =

Divergence of a,
v:as=

Curl of E, v X a=

TABLE 2.1

Vector Operations in Vector Geometry Notation

Vector Geometry

EA + EA, + EA,
BBy 4 BBy 4 B3Ry
2 2
h, b, hy
(A,B, - AgB,)E; + (AB) - AjB)E, + (AB, - A,B))E,
E, U , E, a0 , E; aU
h, 2§ h, 3%, by 3E,
W.,; elements of W, are:
ij ij
_ 1 3A, 1 h., A, 1 3h,
Wii = i + - 3 i o+ i
hy 3% 3 9% By B 3
W, = 1 34, - 1 3h, A,
1] a:L a_'] ___l
h , o, . h
i 9% i %%
1 athyhsa)) o 3(hyhia)y o a(hyhoAg)
hyhohy
| %5 38, dEy
1 h B, h,E, h,E,
h h,h,
3/3g, 3/ g, 3/38,
b4y ) highy

e
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SECTION ITI

CONSERVATION EQUATIONS IN BODY ORIENTED COORDINATES

In order to describe the flow over blunt bodies moving at hypersonic
velocities, it is found convenient to solve the counservation equations in or-
thogonal body oriented coordinate systems. The type of body under consideration,
i.e. three-dimensional, axisymmetric or two dimensional, thus determine the
stretching functions, h|$h27l131 discussed in Sec. II. The class of bodies con-
sidered in this development are axisymmetric or two-dimensional and have the

following stretching functions, see Tab. 3.1:
€| =X, hl
& =Y, h,= | AXTSYMMETRIC (3.1)

& =2, hy=r

| + kY

& =%, h=1+ kY

& =Y, h=1 THO-DIMENS TONAL - (3.2)
63 =Zi h3= I

‘where K is the local body curvature and [ is defined in Fig. 3.1. Using

Fig. 3.1 the following relationship may be found
r=ry+ ysing (3.3)
dr = swn8dy + Rcosfdx (3.4)

where
R=|+ kY - (3.5)
(dtf = R%a¥)® + (yf + (FPdz)f (3.6)

Substituting the stretching functions 3.1 and 3.2 and relationships 3.3
and 3.5 into the general conservation equations for a multicomponent continuum
gas in general orthogonal coordinates given in Section II vields the following

equations,
Continuity:

a(g;:r’*) N ag;z'a;APv) -0 .
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Species Continuity:

alrfPCiu) | g(rrhPCiv) - =d(rhyi)
oX oy ox

- A A
gy( Jiy) + KI w; : y (3.8)
where Jux and - J'y are the mass flux components of species i in the % _and y dlr-
ection respectively. The mass flux vector is the sum of two vectors neglect-

ing force diffusion and pressure diffusion.

- —(D) -—(T) '
Jb = i + i , G-9

The components are

concentration diffusion:

o - _nt 3 (9G] 9%
k#j 1#jk

o _ ., & [0G; ___Yk | |

Jy = IOIRT ZMMDU _Yi, kz=:| 3Nl OY ] (3.11)
k#j 1#jk

thermal diffusion:

m _ — D'alnT

b = T % 3% (3.12)

J;m = —D? g;n 1 | o (3.13)

The two momentum equations can be expressed in the following manner.

X - momentum

prAu-g—Xu- + P g-\y,' - pPxrfuv
A A
+ rA_a__)_(F_) _ a(ngXX) _ a(’g; Tyy) (3.14)
A
—- rfx Tyy + Tz g; @]
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y - momentum

A Q_‘y’_ e A ﬂf_ - A2
Pr uax + PR vay Prrau
+ 7?!’"‘3‘5‘3 B girAT"’) - ‘a%?r%yy) | (3.15)
A ord
+ krAt, + K1y, 3y O

— A a (rhu) 3 (RrAy)
Txx = ~ A [ IX + ay ]
21T du |
_ X _[alrru) | 3(RrAv)
W= gEl oty
+ 2/.LQ_;IL (3.17)
_ X [ alrru) | a(Rray)
2 T A [ ox T oy ]
A
+ 2;;[.%:5% + -rV-ATQ-;f], (3.18)
Ty = Ty = /_L[..,;?!J_.i\_)’(_ + .Q_l;? - —%u] (3.19)

The above stress components are also used in the energy equation.
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!l

prayoH Dk“rAv—g—H- ~ _ olrhay,) A(RrAGpy)

0 X y oX oy
- .__§_(-AqR.X) - %Ef“qﬁ,v) + 5Q_.[l““l,l't’xx + rAVTxy] (3.20)
0 [Rrayty + RrAvt
* 5y [ y + RV

Box = -—27%% + ‘;hadex
_P N Df Jjx Jix |
N?Z j#i M| ‘DU YJ MJ Yl M‘) (3.21)
qD,y = - k Q‘} + Z'h' d"y
— _Ei_ Pdi [) dg! _ \hQL
N2 Z 7 M D ( YM, Y M (3.22)

From eq. 2.36 and eq. 2.37 the components of the radiative flux vector are:

hx = L::"f a"(‘”TBv jji(?)dﬂ dv R dx (3.23)
Ory = _/y‘::)_/; aV(47TBV fI ) df)| dv ady (3.24)

The statement of these vector components completes the set of conservation
equations expressed in body oriented orthogonal coordinates. By the use of the
stretching functions listed in Tab. 3.1, the conservation equations can be
written in the coordinate system desired by following the method used for the

case under consideration in this section. Subsequent transformation of indep-
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endent variables using Dorodnitsyn, Von Mises, Lees or one of many other
transformations may be made in order to simplify the form of the conser-
vation equations. The selection and use of these transformations will not
be discussed here. The reader is referred to Dorrance, Ref., 3.2, and Hansen,

Ref. 3.3, for suitable discussion and listing of similarity transformations.
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Tan € =

as a8
(I1+ < 8) d'x ax

S = Lx(|+K8)Ton€OIX + & 6 =j;XK(x)dX

Body-Oriented Coordinate System

Fig. 3.1

Lo
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Table 3.1 Coordinate systems and stretching Functions

Orthogonal
coordinate
system, and
orthogonal
coordinates

€10 520 B3

Rectangular coordinates

Stretching functions h

h, h

3

Cylindrical
r’ e’ z

r cos @

r sin @

Spherical
r, ¢, 8

r €eos

9

sin ¢

r sin @ sin ¢

r cos ¢

r sin ¢

Parabolic
cylindrical

§, ’n,Z

n)

&M

\ng + T\2

Local
coordinates
along surface

x’ y, z

Local
coordinates
along surface
Symmetric
about axis

X, Vs @

Note:

Additional coordinate systems are considered by Back, Ref. 3.1.
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SECTION IV
THIN VISCOUS SHOCK LAYER EQUATIONS

In the previous section the conservation equations were written in orthogonal
body oriented coordinates. It was pointed out that the motivation to use such a co-
ordinate system was for ease in describing flow over a blunt body. Let us expand

on this point and the details of the problem to be solved.

The aerothermal environment of a blunt vehicle entering a planetary atmosphere
at hypersonic velocities has received a good deal of attention in recent years,
This attention has been centered around the prediction of the heat transferred to
the surface of a vehicle during its atmospheric encounter. The most severe heating
occurs at and near the leading face of a vehicle. For this reason special attention
has been given to the calculation of the flow field and its associated energy trans-

fer to the surface near the front of the vehicle.

In order to determine the proper mathematical model to describe the flow field
developed by a blunt body moving at hypersonic velocities, one must assess the
behavior of the gas that the vehicle will encounter. Fig. 4.1 based on the work of
Ref. 4.1 presents the flight regimes which are encountered by a body during atmos-
pheric entry. The regimes can be grouped into two gasdynamic domains - continuum
and noncontinuum. Hayes and Probstein, Ref. 4.2, demonstrates the continuum domain
can be divided into five regimes: (1) classical boundary layer, (2) vorticity
interaction, .(3) fully viscous, (4) incipient merged layer, and (5) fully merged
layer. The behavior of the gas flowing over a body in the five continuum regimes
can be described using the equations developed in the previous sections. Let us
consider further the characteristics of fluid flow in the five continuum regimes.

1. Boupndary layer regime: The classical boundary layer equations are a

valid approximation of the viscous effects for high Reynolds numbers
corresponding to lower altitudes. Viscous effects dominate near the wall
in a2 region which is small compared to the shock layer thickness. Vor-
ticity. generated by shock curvature is therefore negligible thus not
affecting the boundary layer flow.

2., Vorticity interaction becomes important at lower Reynolds numbers where

shock generated vorticity becomes significant in respect to viscous effects
near the body. Here the outer region of the shock layer, usually con-

sidered the invicid layer, becomes coupled through momentum transport
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to the higher shear region near the body, usually thought of as the
boundary layer. The high shear region near the body is also larger than
experienced at higher Reynolds numbers.

3. Viscous layer Regime: Viscous effects from the body interaction are ,
spreéd throughout the shock iayer. This occurs at lower Reynolds numbérs
and correspondingly higher altitudes than the vorticity interaction |
ﬁreéime. Viscous dissipation at the shock is still small in comparison
to dissipation at the body. This condition is true so long és the ratio
of the mean free path behind the shock over the shock layer thickness
is much smaller than the square root of the density ratio across the
shock wave, Ref. 4.2. This implies that the Rankine-Hugoniot shock wave
équations are valid for determination of shock layer boundary conditions.

4. Incipient merged layer regime: The incipient merged layer begins when
dissipative effects at the shock are significant. The shock wave is thin
relative to the shock layer thickness but the Rankine-Hugoniot relations
must be modified to account for viscous effects at the shock boundary.

5. Fully merged layer regime: At higher altitudes and low Reynolds numbers
a distinct shock does not exist. The free stream mean free path over
the major body radius is approximately one or less. The flow behaves
continuously from the free stream to the body. Above this altitude
range continuum concepts are no longer applicable and the flow, goes

through a transition to free molecular flow.

The foregoing discussion of the five continuum flow regimes follows in part
the reasoning of Hayes and Probstein, Ref., 4.2. This reasoning proceeded under
the assumption that radiative energy transport and ablative mass injection were"
negligible. 1In the present development these two effects are the primary flow
field-body interaction mechanisms which are to be assessed when coupled to the
viscous mechanisms. Fig. 4.1 shows the flight regimes where radiative heating
to a one foot body becomes sighificant. For the most part, significant ablation
rates are also encountered in these regimes when using present day charring ablators
such as carbon phenolic or nylon phenolic. Therefore, let us make additional
observations about the flow characteristics in these continuum flight regimes
where the effects of ablation and radiative energy transfer in the shock layer
are important. In proceeding, our attention will be restricted to ‘the first

three flight regimes, where the heating rates to a vehicle's surface are the most
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significant.

Significant radiative energy transfer has several important effects on the
shock layer behavior. First, radiative transfer couples the energy equation and
thus the thermal boundary layer over the entire shock layer, This is apparent
by recalling that the flux divergence term in the energy equation is evaluated
by an integration over all space in the shock layer. This effect has been demon-
strated by several authors including Ref., 4.3 and 4.4. Further, the thermal boun-
dary layer exists from the shock to the body for all three flight regimes in the
radiative coupled domain. Secondly, radiative energy transfer produces nonadiabatic
or energy loss effects. Principally, radiant energy is lost through the trans-
parent shock wave. Thirdly, the effect of radiative transfer in the shock wave
is coupled through the energy equation to the momentum equation. Although this
coupling effect is not altogether negligible, it does not change the conclusions
obtained about momentum transfer in the shock layer in the first three flight
regimes. Therefore, even though the viscous effects may be approximated through
boundary layer concepts with possible modifications of edge conditions in the
vorticity layer regime, the energy transport occurs over the entire shock layer.
In the viscous layer regime both viscous and energy transport are significant over

the entire shock layer.

Appreciable mass injection rates of ablation products results in additional
effects on energy and momentum transfer within the shock layer. High mass addition
rates tends to enlarge the region of shear dominated flow near the body. Libby,
Ref. 4.5 showed experimentally and theoretically that in the boundary layer regime,
boundary layer concepts could be applied when mass injection or suction rates
were quite large. This study did not include the effects of radiation, but since
energy transport does not change the character of momentum transport these con-
clusions are also valid insofar as momentum transfer is concerned for radiative
coupled shock layers. Mass injection has other effects such as reduction of
shear at the wall, Ref. 4.4, and reduction of heat transfer at the wall, Ref. 4.4,
4.5 and many others. These effects although of great importance do not change

the basic characteristics of momentum or energy transfer in the shock layer.

We may conclude that for flight conditions in the radiative coupled domain
where ablation rates are also significant, the character of the momentum transfer
is essentially the same as without these effects. However, the characteristics

of energy transfer are significantly different in that the entire shock layer
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must be considered in all three flight regimes.

With the foregoing statements as background the problem which we wish to
solve can be stated. The basic conservation equations stated in the previous
section are appropriate to describe the flow of a continuum reacting and radiating
gas mixture over a blunted surface when thermodynamic equilibrium exists. For
the present work, we will determine the reduced set of equations which describe
the flow in a shock layer over a blunt body when the outer boundary of the shock
layer is a shock wave described by the Rankine-Hugoniot equations. Thus the equa-
tions governing the flow in the shock layer will be applicable to the three higher
Reynolds number regimes both in and out of the radiation coupled domain. The
prime concern and motivation for obtaining this set of equations is to describe the
heat transfer mechanisms which produce surface heating such that surface heating

conditions can be predicted by numerical calculation.

In order to determine the appropriate set of equations which realistically
approximate the flow situation just described, an order of magnitude assessment
of the terms in the basic conservation equations is needed. This is propérly
carried out by first nondimensionalizing the conservation equations. The following

nondimensional variables are introduced which are appropriate to the problem under

consideration.
* * %*
X* y U Vv
=5 y=2 u= - V= s
< R TR Tk

R
- - K~
p - % "L /_Lv'r X

5,0 0

7

3|

(%.1)

o~ F?ﬁuf* ? %,
A (T = EE M Rl




where IX*R,X 5%“ qR,
Mox = H(PG Koy = SR

It should be noted that the equations in the previous sections are in
dimensional form. In this section a superscript * will denote dimensional

variables unless it is explicitly stated otherwise.

The dimensional global continuity equation is:

200+ LEA) = o

Using the dimensionless variables stated in Eq. 4.1 the above equation may be

written as

Ra
R” 9§

Dividing by f{iLJ* yields the dimensionless form

O rtou) + pusR L ®rapy) = o

PU.. R 3y

A JQ_ A _ '
a{ rpu) + ay(k‘r pV) - O (4.3)

From Eq. 3.8, the dimensional species continuity equation is:

a * A & a ~ % * * -— % *
S+ FRRIACY) = a%(r A i)

J;:y) +  Rrhu

(4.4)
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Introducing dimensionless variables gives

* | pE B: 9 (Ao ) 1
P UOR [ af (T pclu) + F) (KE’ PCtV)J
= —eu g [Et + SRR +
£ Um% Rrhw

which yields

a e |
Eg(rﬂpc-u) + FERAPCY) = - Ly

013 (4.5)
ay (Kr JlY) + Kr-w;
Substituting Eqs. 3.16, 3.18 and 3,19 into Eq.V3.15 yields the dimensional
x-momentum equation
au* v a*
% * o~ A OU N Y W
r r + K Irov=— K
P X PF "oy + P Kr-uyv
0 0 ( “A v)\* 0 5 0
bR 2B (] )+ 2 env)
ET% I R ax( u)+a (Rr v}
2 au a ~ ‘A av auv'r
v 2 ——7-\.+Kv] - (Kr ['w—'ﬁ'
R Lox sy \ < EL®ax Tt gy
_ K +]) *A *[l ov* ou’ K &
= U — Kr R — e it
4 'u, % ax+ T ay K u]
X* [ a A ;'r a A~ KP Lk ar*A (4.6)
i Fr U U |
+ 24U l:c)r*“]2 + gV Or® ord  _
K r*A ax‘k rrA axv': ayw’: O

Proceeding as before the dimensionless variables are introduced.
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sl - anfloed]

¢ ey [petn] + 2
- R ol [ : ()\{a (rhu) + 2

“RRR Lo 3¢ 3y
- Flee o (27 {3 +M)
l“'s,oF\§r Uw

;"‘R”‘ (7 e { % 5 ol

+ R*géf;Uw 'aay(xr /.LU)]

- &R He LFJ{ [rre (L %\é + g - 5]

+ Hsp WRPQ*R* [ ;?z\r“ (GaE (rfu) + ?/(KYAV))(%ﬁ)]

+ e U,;g*l';* [ z;rt: (3?)2 + 2 ;/A S;A ggA] =0
R, = PifLLJiR"‘ | .7

ancelling dimensionless terms yields the dimensionless E-momentum equation.
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,or"ug--g= + PT(’FAV%% + pkrhiuv 4+ rA-g-g-
3 Flee {aas( Fapru v g fRA)
¢ S (ABEg - o
+ -é%(r“#-g—é’— + f?‘rA/-La—‘; - KrA}LU) -
+ KrAﬂ(%—g—V + —g—y—- - Ku
Rl + go) (3)
The y-momentum equation can be stated in dimensional form from Egs.
3.15 = 3,19.
p*r*“u*g-% + p*r"A?v*% —~ ,o""‘z«“‘*r”““u*2
- F i)+ xFawetv)
+ 2#‘“;"*A[g:j + K"“v”‘] 4.9
¢ A + e[ 357]
s B T - o




Introduction of nondimensional variables into the y-momentum equations
follows the same procedure and pattern as in the x-momentum equation. The

resulting nondimensional y-momentum equation is:

prAug_g_ + prAk\'Vg_;- _ prriu? 4 ?rA_@_';_

- wlal e+ & - #)

+ %(Xsé—(r“u) + XB-@V(:?’rAV)) + -‘%(z?rAF%)
e e Fer] - [
- Al s genl3] - wal]
B - o

Using Eqs. 3.20 with 3.16, 3.17 and 3.19 the energy equation can be

written in dimensional form:

Py H‘Au*g—'s-: + p*f?'r*“V’% = —Apy = Aoy — Agy

- Koy (B[t + Fpireai]

+ x*v%[-é@-)%(r*ww + —gw(?‘r*“\f)] + z?r*Afﬁ*v"‘%y})
where the diffusional and radiative flux divergence terms, A*, are defined

in Eq. 4,1, Substitution of the nondimensional ratios from Eq. 4.1 yields
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+ Xv[—a—(r“u) +

Introducing the Reynolds number the nondimensional energy equation

can be written:

oH oH ; |
rAPULS + Rripvi—- = —Z[AD.X t Doy + Mgy

o€ oy
v an] ¢ & {5F (R EE ¢ S
e[ ] ¢33 9)
Ch g g - B e nlde
+ b%(i%‘r“v)] + zf?’rApv_g_Vy_) | | 4.12)

Having stated the nondimensional conservation equations we are confronted
with the problem of estimating the relative magnitude of the terms in each

equation.

According to the results of Hayes and Probstein Ref. 4.2 the gas behind
a bow shock of a hypervelocity vehicle is a continuum for freestream Reynolds

numbers greater than 100 based on principle body radius. Further, the standoff
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distance nondimensionalized by body radius for flight Reynolds numbers greater

than 100 has been shown to be approximately equal to the density ratio across

the bow shock.

It can be quite simply shown that the density ratio for

hypersonic Mach numbers is of the order of one tenth and less for dissociating

gases.

These stated relationships can be expressed as follows:

8*z—<
= = P <0

Re > 100,

(4.13)

Since we are concerned with a thin layer with respect to the body radius,

Prandtls concepts for the relative order of magnitude of terms in the con-

servation equations can be employed.

From Schlichting Ref. 4.6, the relation-

ships for the relative order of nondimensionalized terms may be written.

in the
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Using the above estimates the relative order of magnitude of the terms

four conservation equations have been determined.

continuity

or[n O[]

_0.,.A 0 ;~vA _
acs(rPu) + ay(:<r/°v) = 0
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Species continuity

o ol o]
Stecu) +  FRTPCY) = — S (i) .
o 7rs
- Bﬁy(?r"diy) + Rrhw
_§ - Momentum
ol o]t OLP]
P"AU%E' + P'?JYAV%%- +  PKrhuv  + rA-g-g-
oL ol
- & Lo [# agra) + 5 (& FRe)
oL OLP] - OLp
¢ (B G v oSE ) - e
OL7] | 0[7.-5':5] O[-.—f's—] (4.17)
3 (,a OV O [won, QU 5
+ é—y(r:"-—é—) + W(Krpay) - W(KVAP'U)
o[+] oLl oL/l
bR Ey - R - g gE(y ‘3‘?)
OL1] om OLP?]
- st e (5] - oBK(GE) - BeEEY =0
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V - Momentum

v

O[P] oLPl OL1]
prAu-g—\é + PrAf?‘vg—\-’y prrhfuz  + /?'rA-?—)?

OLA] o[#] oL
RGFE - A8 - 4
TR B
+ 3y ()\ -a—g(r‘\u)) + 3y ()\W(KrAV)) — _?'—K?BE(YAU)

OL1] oLn OLp] 8
_ %%(KI’AV) - 2;1,!.%’5%9_ _ Py

0CA) 0L5] OL7%]
) - hde ) - el

OL7"] ol%]
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Energy

o ot olg) g
rApu%?— + I?JTAPV%—;-" = —Z[AD’X + Apy
o] ol on
t Agyx T AR,V] + ée{a%(%l”gg(wu))
oL OL1]
T s
oL oA 4.19)
+ a% 2rA,’5,uuv) + —é%—(r“p-%—%)
OLi] O‘[_,BJ OLpl
0[z] 0|+] oL
+ -é%-(xrpu-g—%) - a_aT(Kr,A/'LUZ + %(xv-{aa—g(r“u))
OCt] OL!]
g ¢ )
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At this lower limit on Reynolds number, let us drop all terms of order 752
and higher in all equations except the y-momentum equation. In the y-momentum
equation terms of order 752 are retained for a specific reason. Along

the stagnation line, €'=:(), the U component of velocity is zero. Thus

the y-momentum equation is of one order lower at £-== (). It is appropriate

in this case to consider terms of two orders of magnitude in this equation

namely if and 752 The resulting conservation equations are:
Global continuity
i(rApu) + 9 ('R’rAPv) = 0 (4.15)

3¢ 3y

Species continuity

0 9 (x~ d ~
B—E-(r“pciu) + W(KVAPCN) = ——(W(R"r"dw) + Rriw; (.20

E -momentum

oL O[] OLpl
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Yy -momentum ( O[ﬁj and larger terms)

0Lp) oL 7] orn
praugf + prARVEL - pRTRE 4 RrASE
o) obl
_ L[ 9na @LJ_) 0 ()\___ rAu) %.22)
Re{agb'“ay t o5y Pl |
| 1
D
+ 9 (x-@—(k“r‘\v)) + 9 (z?r“/u -‘-3—\—'-)} = Q0
5y \*3y 3y 5y

\V -momentum ( O[pz] and larger terms)

oLpl orpl oL

0
(4.23)
ol7] ol+ oLl
0 d A 8 [,n, OV _ O A
t o3y ()‘57(“ v)) + ay(zxr M y) Y (rApku)
Oll] OL1] OL1]
Ak 0 Ak O _ oppukrhoul _
- *?-"(—B'—(VAU) - ?&W(KVAV) 2k 3 } 0

At f =O the above equation has terms which are of order ,5- and ﬁz.
Two terms which can be directly eliminated from this equation when U =O

at f =O are indicated by arrows. It is interesting to note that the
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convective and viscous terms are of the same order along the stagnation

line.
Energy

oLl 0Ll Ol ohl

rAPuaH + KrAPVaH = —2(./\.0’, * AR,V)

0¢ oY
E T ¢ I

) aoU) _ 9 (crApy?
v R FRrm ) ay(KrFu)}

The simplified set of conservation equations, Eqs. 4.15, 4.20 - 4.24
form a set of partial differential equations (neglecting the radiative terms)
which are valid for Reynolds numbers greater than 100. It is obvious that
the terms which have been dropped due to order of magnitude reasoning become
less significant as the Reynolds number is increased. These "thin shock
layer" equations are the same as second order boundary layer equations with

curvature terms.

To this point little has been said about the bulk viscosity which
appears in the X. term in the momentum and energy equations. This has been
done for the sake of genérality. However, to interpret the pressure in our
equations as the local thermodynamic pressure Stokes' postulate

2p’ + 33X = o (4.25)

must be accepted. The bulk viscosity iI' is a direct indication of the
departure of the mean pressure from the thermodynamic pressure expressed by
the equation of state Ref, 4,7. Further, Laitone Ref. 4.7 pointé out that
by accepting Stokes postulate for compressible flows we are at best restricted
to monatomic gases., This appears to be a rather stringent assumption until
one examines the type of behavior a polyatomic gas must exhibit to significantly
deviate from monatomic behavior, To a first approximation the bulk viscosity

;E characterizes the dependence of pressure on the rate of change of density
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Ref. 4.8. Gases which exhibit showly excited internal degrees of freedom
(i.e. rotational or vibrational) in flows which have rapid changes in the
state of the fluid, the pressure cannot follow the changes in density and
differs from its value for thermodynamic equilibrium. Thus, accepting Stokes'
postulate for bulk viscosity is coasistent with our basic assumption of local
.thermodynamic equilibrium used throughout this development. Henceforth, we

will use

x’c — - .L/-L* (4.26)

in our equations. In thin shock layer equations Stokes' relation is needed
only for the y-momentum equation. The order analysis has eliminated all

terms containing A in both the x-momentum and energy equation.

3

In addition to the simplifications from the order of magnitude analysis,
further simplification of the radiative flux divergence term in the energy
equation is necessary in order to solve the set of integro-partial differential
equations in a practical manner. Without additional simplification the
conservation equations are elliptic. Two assumptioﬁs are made here in order

to evaluate the radiative flux4divergence term j\Ry .
7

e The shock layer geometry is approximated locally by an infinite

plane slab.

e The shock layer is assumed to be locally one-dimensional in that
radiative transport characteristics vary only across the infinite

plane slab,

It has been shown that this one-dimensional plane slab model can be
used in obtaining quantitatively valid results Ref. 4.9. Further, this model
identically satisfies the order of magnitude analysis which dropped j\R,y.
The mathematical development of this model follows that presented by Spradley
and Engel Ref. 4.10 with thé exception that boundary conditions are left 7
general following the work of R. and M. Goulard Ref. 4.11.

We note that dimensional equations will be used throughout the rest of
this section without the superscript * notation unless the superscript is

needed for clarity.
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Let us consider the radiative transfer Eq. 1.27

%— g%v + ﬁl.vIv = aV(Bv - Iv)

Following the assumptions of Section I let

1 0aly —
c ot O

Therefore our transfer equation can be written

QVI, av(I, — By) (4.27)
By imposing the one-dimensional approximation, the radiative transfer equation

for the y-direction may be written

((TL)-(T%{%) _ L%%_z = oy, - B (4.28)

For the one-dimensional problem the absorption and emission characteristics
vary only in one direction, y. This fact is sufficient information to solve
Eq. 4.28 for the specific intensity by integration in y. We will see later
that although the specific intensity is evaluated one-dimensionally the radi-
ative flux and flux divergence must be evaluated over all space. Consequently
the flux divergence is integrated over an infinite plane slab which has the

same intensity variation across the slab at any station down the slab.

In order to clarify the solution of Eq. 4.28, Fig. 4.2 is presented.

From Fig. 4.2 we observe

dy = cosW¥ os = 0s (4.29)

where ( = COS\I/
By defining the optical depth as

T, = favdy (4.30)

and using Eq. 4.29 the radiative transfer equation can be rewritten

al,
aT, L-8 (4.31)

L
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The radiative transfer Eq. 4.31 can be solved formally by using the variable

coefficient method:
I, = C(T)) exp(’l‘v/b)

Substitution of the above relation into Eq. 4.31 and solving for the constant

(:(frb) yields
C(L,) = C(Tw Tvz fBVexp -TA) T" (4.32)

Thus the general expression for the specific intensity is

I, = C(Ty, T2 exp(’l},/,) - exp(TLA) Tv,szeXp ’I‘/,

vl . 33)
Splitting the integration into two parts and evaluating boundary conditions

yields
+ —
I, = I, + L

where

I f By expl-(Ti- “Tyh) Lo

(4.34)
+ Iv (Tv,w) exp("(Tv,w"Tv)/')
I, = -—fTV'sB exp (- (T, —T)/,)’QL
Vv TV v | v L/
(4.35)

+ I;- (fI:r,s) eXp(-(’rv,s - ’I‘v)/f)

The above equations describe the radiation field in terms of temperature
through Planck's functlon E%v for a nounscattering gas. The quantities

Iv (f[hs) and I (ﬁrbw) are boundary conditions and the exponentials
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represent attenuation over optical path length.

Using Eqs. 4.34 and 4.35 for the specific intensity, the radiative
flux and flux divergence may be evaluated. Recalling from Section I the

radiative flux term can be expressed as

R(r) = _L‘Imivﬁ, dQ adv (4.36)

For the geometry under consideration the unit vector Sl; can be repaced by the

direction cosine { . From Fig. 4.3 we note that

afl = sNV dVad®

and
L = cosVY

Therefore

0 = -dd® i @

Substitution of Eq. 4.37 into 4.36 yields
0 nl p2m ’
dry = —_/;f|fo I,d®¢ guv gv (4.38)

Simplifying for the one dimensional case by integration in Cf() yields

Oy —277./;“[" Lo de gy (439

It is convenient to split the integration in Eq. 4.39.
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+ L4
_ = T a
CIRN 2 ‘/O-IVL L

(4.40)
- p=l d
qR,v - 27_/0 Ivl' ¢
Thug the maenocromatic heat flux is the
_ g =
qR,v = qR,v - qR,v
Substituting Eq. 4.34 and 4.35 into 4.40 yields
I
+ . v o~ ~
qR,v = —27 Bsz(’I‘v_’R)dTv
Tow
+ 4 (4.47)
+ ZqR’v(/rv,w) E3(Tv,w_ 'TR)
ir;s
— y —~ o
G = —27[ "BEAT-TOT,
v
(4.42)
+ 205, (Tus) By(Tys = T)
where the direction cosine, L , dependence is expressed in terms of the
exponential integral function of order N.
' 2
En, = f"n exp(-1/) dt (4.43)
0
Let us examine the radiative flux equation given in Section III
V(1) po 4 _
Gy = f fav 4 By -—f Iv(r)o’&l)o’udy (4.44)
! y(%) 40 ]
Differentiating with respect to y we obtain
0%y — [“ofarB, - [T1.00)d
= Ay v v 4 (4.45)
oy 0 0 |
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which is the radiative flux divergence in the y direction. ‘In our energy
equation, Eq. 4.24, we have the term
— 0 ([~
AR,V oY (K r qﬁ,v)

Due to the one-dimensional planar slab approximation this term will be

represented by

_Q_ A ~ ~rA athy aN A

As a result of this approximation, an evaluation of Eq. 4.45 is sufficient

to describe the radiative transfer influence in the energy equation.

In order to evaluate Eq. 4.45, the intensity at a fixed point y and in
a direction defined by C) and L 1is integrated over all solid angles.
Substituting for the solid angle, the integration for a one-dimensional

plane slab can be readily carried out.

%9)7&! = ‘/:av(zvr‘[l'hde - 47TBV)0’V .47y

" where the inner integral is

_/'"' I, o = -[0[ ?Bvexp

' ‘ (4.48)
Lo -1 T
...f' l:f Bv exp (’I:/ (,’r") d;I:, :‘ dla
° LT,
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Eq. 4.48 can be simplified by interchanging the order of ‘integration as sub-

stituting the exponential integral function.

=1 Tv o~ P
j:I\,dc. = [, BEML-T)dT,

~IF (T Ex(Tow- 1)

Lo ~ ~
+ BVEI('I:I - ’I:I) aT

v

“I; (Tv,s) E2 (frv ‘Tv,s)

Substituting Eq. 4.49 into 4.47 provides an expression for the radiative

flux divergence in a one-dimensional slab.,

+ IF (D) B, (T3 = Tow)

"I\V,W 2
+[."BE (T -T)aT

F (T B, (Tu-T) - sz] av

where the exponential integral function Ign
istics.

En(T) = En("'l’) for N=1,3,5,7 -

En(t) = -Ep(-1) for N=2,4,68,

Eq. 4.50 is valid for arbitrary boundary conditions with the exception that

only one boundary reflection of a photon packet is allowed.
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W

In practice,

(4.49)

(4.50)

has the following character-

(4.51)



for a shock layer solution, the subscript "w is interpreted as conditions

at the wall or body and "s" as conditions at the shock. Under this inter- .
pretation I-(Iks)=() barring precursor radiation and the optical depth
at the wall ffgw =’(D. Further, for the case of a perfect absorbing wall
I ‘ (()) = C). These simplifications are the usual ones made in describing
radiation transport in a radiating shock layer. Making these simplificat ions

reduces Eq. 4.50 to Eq. B .31 of Ref. 4.10.

The one-dimensional planar slab approximations which result in Eq.
4.50 have important ramifications to our shock layer problem. Radiation cal-
culations can be made using Eq. 4.50 at each §' location independent of other
g' locations. This makes the thin shock layer equations a set of parabolic
integro-differential equations which can be solved using marching schemes

which are used for classical boundary layer equations.

An observation concerning the planar slab approximation is in order
at this point. This approximation eliminates all curvature effects from the
radiation calculation. A more appropriate approximation for most axisymmetri-
cally blunted vehicles would be a conceutric sphere approximation for the
boundaries of the shock layer as proposed by Viskanta Ref. 4.12. TFor a
two-dimensional body the corresponding approximation is quite obviously con-
centric cylinder boundaries. However, as pointed out by Viskanta Ref. 4.12
comparatively little attention has been given to radiative transfer in curvi-
linear systems. The paper by Viskanta analyzed the steady state radiative
transfer between two concentric, gray, opaque spheres separated by a gray
absorbing and emitting medium which generated heat uniformily. He concluded,
for constant absorption coefficients, that curvature effects were evident
for concentfic sphere radii ratios as high as .99. This corresponds approxi-
mately to a shock standoff distance of E;/F? 2 0l . Nominal hypersonic
standoff distances are .04 < R < .10, From Viskanta's work we are led
to expect that curvature effects may be significant for both radiative flux
and flux divergence in a typical shock layer. The acfual magnitude of these
effects are difficult to assess because of the constant absorption coefficient
assumption and differences in boundary conditions for the problems under

congsideration. Thus an accurate assessment of curvature effects on shock

layer radiative transport, to the authors' knowledge, is absent today. It is felt
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that using a concentric sphere model is analogus to including both first and
second order effects whereas the infinite parallel plate model includes only
first order effects. However, for the present we will use the infinite

parallel plate model in our development.

As a result of the order of magnitude analysis, the bulk viscosity
assumption, and the radiative transfer model the thin shock layer equations

may be written in the following dimensional form:

Global continuity

—?(.(rAPu) + -fy-(f'?rAPV) = 0 4.52)

Species continuity

9 (pA 0 Aoy = _90 Rridiy) + kriw,
= (1 PCU) + 5y (KT PCiV) 3y i) '(4.53)

X — Momentum

pPr udu + P:?‘r“v%;—- + pPxrhfuv = —rA-Q—E- (4.54)

+ = (Rrip =

y oy oy
‘)L_" Momentum ( C)[}S] and larger te?ms)
A oV | Ay a\/ - A _ ¢ Alélfz
Pr Uax + PKr ay Prr®u Kr ay
0 (A OUy _ 2 0 orftu 40 (A
G I o GE e B P A G 7
. A |
- -%--(%—(KYA/*V + ?/‘LV-@{;) (4.55)
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Y — Momentum (() [;32] and larger terms)

ov. ~., OV ~.n OP
prAuax + PYAKV-——y— - PrrAU® = -KrA—a—y-
0 ;eApOuy 2 3 driy 4 0 (opAy OV
+ ax(r #ay) 3 3y (H IX ) + -55?(/<r‘\/-LB-S,--)(LL \
a .5
- %W(Kr“#V) - 5%(f"f</w) + %#%f—;(r“w
2pl O (mrAyy _ KAaOU 2 0 4,00
+ $HS ay( rev) 2SIt 3ay(;<;tvay)
Energz
Ap,, OH ~.Apy OH -0 [~ oT
teudy + Rewvgy = SE[RA K GG ¢ 2 hidyy
DT JJY \J‘y aq
__1 ooy . ~rA R,Y
;% M| lDu YM Y M)}] KT ay (4.57)

Let us now examine the simplifications which are needed to obtain the
classical boundary layer equations from the thin shock layer equations stated

above., First, let us drop all terms of order 75 or smaller, The resulting

equations are:

Global continuity

B-a;(-(,or"u) + g‘zy—(/of?'r“v) = 0 (4.52)
Species continuity

0 A _Q__ ~A — ____@_ rA ~eA

ax(f PCiu) + ay(Kl’ PCiV) ay(l‘ﬂf Jiy) + Rriw .
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X = Momentum (first order)

pr‘*ugu + pKrAVg\L’l = -rAQ-E- + %[Nr“#-@i‘g" (4.58)

\\ = Momentum (first order)

F

pruU® = ?’91;— (4.59)

Energy (first order)

oH aodH _ d oT\ _ dfmafsn
rpuax + Kr ,OVay = é—-—('l?' k y) (Kr {Zh.d.,y

y ay i
_ z Z Ni Di Jiy _ \Jy)} _ ?rAaqR,y
N2 T Mi ID” YJMJ YM oy (4.60)
6( A au)
+ KTroHU
oy oy
Additional simplifications can be made by neglecting the boundary layer
thickness in comparison to the local body radius. This implies
K+=0, R-=I, and rP—rh (4.61)
4 Using these limits, Eqs. 4.52, 4,53, 4.58— 4,60 can be written:
Global céntinuity (B.L.)
0 /.A
—(r2pu + T Vv = 0 (4.62)
D (itpu) + (v K
Species continuity (B.L.)
d d = -9 .
X 5—;(r£PCaU) + W(PCiV) = —3yldy) + @i e
X = Momentum (B.L.) 3
au ou oP ou |
Yy 4 opyQd - 90 Coul (4.64)
Pusx + PYay ox 5y oy
\V = Momentum (B.L.)
o = %TF')_ (4.65)
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Energy (B.L.)

oH oH _ 0 0T )
“Sx f Pey = RSy - gy

_ P N DI | Jiy _Jdiy 0Gs y (4.66)
SRR R A i o I

0 au
gy (HU5y)

Equations 4.62 through 4.66 are essentially the same as the boundary
layer (B.L.) equations which are given by Fay and Riddell Ref. 4.13, Dorance
Ref. 4.14 and others.  The boundary layer equations for a flat plate are
obtained by simply noting that ﬂﬁ is not a function of X . We can con-
clude from the foregoing simplifications of the thin shock layer equations
that the classical Prandtl type boundary equations contain only first order

terms which exhibit no normal component curvature effects.

Having stated the thin shock layer and boundary layer equations, the
appropriate boundary conditions for the two sets of equations can now be
discussed. Figure 4.4 presents a sketch of the various regions and boundaries
of particular interest in the thin shock layer problem. We note that in
addition to the shock layer region the char layer and decomposition zone are
important in our problem. These regions are important because the momentum,
energy and mass transfer in the char and decomposition regions are intimately
coupled to the transfer in the shock layer. Theoretically we could consider
all the processes which take place between the shock wave and the virgin
plastic of the body and attempt to solve the governing equations for this
boundary valued problem. However, it is more practical to divide the solution
of this general problem into a shock layer and material response problem
and iterate on the boundary conditions at the material surface. Therefore,
it is important to realize what information is available from the material
response solution which could be used for boundary conditions of the thin
shock layer equations. This is accomplished by using surface balances. With
this perspective of the general problem in mind, the nature of the thin shock

layer equations and boundary conditions will be discussed.
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As noted previously, the thin shock equations are a set of parabolic
integro-differential equations with initial values given along X =0 ,
the stagnation line. Because the shock wave location is not known before
hand, the blunt body problem is mathematically referred to as a free boundary
problem., Given initial conditions along the stagnation line and boundary
conditions along the body, the thin shock layer equations can theoretically
be solved with a simultaneous development of the shdck geometry and cor-
responding shock boundary conditions. The shock geometry (see Fig. 3.1)

can be obtained by carrying out the following integration.
% x* A KA
3 = f (I + < &) 1an € dx (4.67)
]

Tn practice another technique has been used to determine the shock
geometry Ref. 4.3, 4.10 and others. The shock geometry is assumed and spec-
ified in terms of Cj%éyx . Iterations are made around the body until the

input and output shock geometry coincide.

If the shock geometry is known the Rankine-Hugoniot equations can be
used to obtain some of the shock boundary conditions. The development of
these equations in curvilinear coordinates follows directly from Ref. 4.10.
The dimensional Rankine-Hugoniot equations written in rectangular coordinates

are:

Continuity
P Vaoyn

% 3 -
A Ve (4.68)

Momentum

3 -,’:2 E b3 *2
(normal) % Voon, =+ P”* Ps Vs,n + F): (4.69)

(tangential)’ \C:T = ;T ; ‘ (4.70)

Energz

+Vea + he = +Ven + hs (4.71)
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Using Fig. 4.5 the above equations can be written in body oriented coordinates,.

From geometry we have

V& = \Ver SINE - \j,cos€ (4.72)
¥* % %
Us = Vgr COSE — Ven SINE (4.73)

where
% *
Veo,n = Uoo cos ¢
% — *
Ven P U COS ¢

%

Ve

Il

* o
Voo,t = Uoo SlN ¢

]

' * * *
Substituting for Voo,n ,\A-,n and V.,,,r Eqs. 4.72 and . 4.73 yield

v, = U:S'Nqb SINE — ﬁU:cos¢ CoS€ : (478
Us = U:smqs cose - FU:cosda SIN € (4.75)

The pressure behind the shock can be obtainfd by using the normal momentum

equation and substituting for V«,‘n and Vs,n.

pi(Uscosg) + P2 = p(PULcos$)P + R (4.76)

* %
By substituting for Voo,n and Vs,n the energy equation can be written

A

o | * -—2 *
he = L U(1-p")cos2¢ + h, (4.77)
It can be shown that Eq. 4.77 is a simplified form of

ol; *2 %2 *
he = %— - 2 (Us" + V%) +  he (4.78)
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Nondimensionalizing Eqs. 4.74 through 4.78 and dropping P” and hw

which are order (2?2) yields the following shock boundary conditions.

V; = SINg SINE — Pcose cose 4.79)
U = SINGg cos € + pcoscsin € (4.80)
P, = (I-P)cos®¢ (4.81)
he = (1-P%)cos?¢p .82y

or

he

| = (U2 + v2) (4.83)

It is important to realize that the Rankine-Hugoniot relations are valid only
if strong precursor radiation effects do not become important. The shock
conditions can be more adequately described for the strong precursor radia-
tion problem with modified Rankine-Hugoniot relations presented by Zeldovich
and Raezer Ref. 4.15. This restriction in effect provides an upper Mach
number limit on the boundary conditions of the present analysis. However,
significant precursor radiation effects are not experienced in air below
flight velocities of approximately 60,000 to 65,000 ft./sec. as demonstrated
by Lasher and Wilson Ref. 4.16. Therefore, the Rankine-Hugoniot relations
provide satisfactory boundary conditions for the outer edge of the thin
shock layer equations for many problems of current interest in atmospheric

entry. Let us now write the shock boundary conditions at Y = 8

c
I

Us
V = Vg
P=FR
= hsor Qs = |
Ci= Cis (|:>s,hs) (Assuming chemical equilibrium)

I; (Tv,s) = O

(4. 84)
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The Rankine-Hugoniot equations provide expressions for Us, Vg,F%, and f]s_
The equation of state and freestream mass fraction provides the additional
information needed to determine the post shock mass fractions assuming
chemical equilibrium. The specific intensity coming through the shock
towards the body is specified as zero. We note that in total four boundary
conditions are needed for the energy equation because of its integro-
differential nature. Thus two boundary conditions, enthalpy and specific

intensity, have been specified at the shock.

The corresponding body surface boundary conditions can be written

for Y= O

(4.85)

u

vV =
P = R
h =
C

i = (:Lw
Is (Tvw) = B,
Tiw = ©

The boundary conditions specified in 4.84 and 4.85 are sufficient to solve
the thin shock layer equations. However, substitution of equivalent
boundary conditions for some surface conditions is found to be practical.
For example the normal velocity at the wall is usually replaced by (/)V)w .
Of greater practical importance is the wall boundary condition on pressure.
This pressure is not known a priori. An equivalent boundary condition

is then needed. There are at least two suitable boundary conditions which
might be used in lieu of pressure. These are the normal pressure gradient
at the shock or the normal pressure gradient at the body. The normal
pressure gradient at the shock could be specified by evaluating the inviscid
y - momentum equation at the shock using the Rankine-Hugoniot equatiomns.

The normal pressure gradient at the body could be set equal zero from boundary
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layer theory., Each of these conditions would involve some degree of approx-
imation. To evaluate the pressure gradient at the shock an approximate

form of the continuity equation is needed. Correspondingly the zero normal
pressure gradient assumption at the wall neglects the wall velocity head

at the body which would push the true stagnation pressure point off the body.
However, each of the approximations appears to be consistent with the order
of magnitude analysis. An additional complicating factor arises when one
observes what boundary condition is needed in the material response analysis.
The pressure at the outer wall is usually specified as a boundary condition
Ref. 4.17. Thus by specifying a slope in the flow field analysis the pres-
sure at the surface will be calculated whereas in the material response analy-
sis it is specified. 1Ideally one would like to know and specify the pressure
boundary condition for both problems. This would eliminate iterating on

this variable between the two solutions.

In addition to the boundary conditions discussed above, additional boundary
conditions have been used when integral techniques are used to solve the gov-
erning equations. The number of additional boundary conditions used is
dictated in this case by the order of polynomial selected to represent the
velocity or enthalpy profiles. Some typical boundary conditions which have

been used for this purpose Ref., 4,10, 4.18 are:

momentum:
variable obtained 2_
8
fU dy Total mass balance
0

Q
o

X — momentum evaluated behind the shock or vorticity
evaluated behind the shock

Qs
<
o

2 ‘

g LL = 0 Assuming no viscous dissipation behind the shock
s

9°u

3 5 ¥ — momentum evaluated at the body surface
"
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energy:
variable obtained Ly

09
S Energy Eq. evaluated behind the shock
oY /s |

R
oy?

—

the shock assuming a concentric shock

—_—

$

Third differerential of the energy Eq. evaluated be-
= C) hind the shock assuming a concentric shock and the radia-
$

o*g
ay*

tive flux divergence is proportional to the total

) Differentiation of the energy Eq. evaluated behind
) enthalpy to a constant power.

&g
) The energy equation evaluated at the wall neglecting
ay W curvature effects '

Typical boundary conditions for the boundary layer equations can now be
discussed in terms of the ones used for the shock layer equations. OQuter
boundary conditions along a line between the shock and the body known as the

B.L. edge are used rather than the Rankine-Hugoniot equations. These edge
Aconditions are usually obtained using some inviscid layer analysis which is
bounded by a shock and a streamline. The method of characteristics is used
for the supersonic portion of the flow and typically a Belostserkovskii tech-
nique is used for the near stagnation subsonic flow. These methods provide

the following B.L, edge conditions

U = Ue

(4.86)

\

P

h = heor @ = G, !
C

P = Cie (Pe’ he) (assuming chemieal equilibrium)

I; (Tv,e) (usually not used)
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The B.L. wall boundary conditions can be written:
U= U = O
PV = (PV),

Po = R

hwe = g,

i = Ciw |

;(TV;W) - Bv (usually not used)

(4.87)

O S5 U

L.

If the spectral intensity is eliminated from the previous two sets of boundary
conditions they are equivalent to those presented in Chapter 1 of Ref 4.14.
One can observe that the problem of iterating on pressure between a boundary
layer solution and material response solution is eliminated. However, this
problem is left unresolved in that the correct edge pressure can be obtained
accurately only through an iteration procedure between the inviscid flow analy-
sis and the boundary layer analysis. It is also significant to point out that,
although usually not attempted, it is computationally rather difficult to
handle B.L. and inviscid flows which are coupled by radiative transfer. 1In
addition to the geometrical integration problems the boundary condition on

" specific intensity or radiative flux is not a single value but a frequency

dependent function which must be matched at the B.L. edge.

To this point we have not discussed how initial values for the T.S.L.
equations may be determined. This problem is of near equal importance to
the entire shock layer problem and will be discussed in the remainder of this
section. To obtain initial values for the shock layer solution, a reduced
set of the T.S.L. equations must be solved at X = O along y , the stagnation
line. The solution of this set of equatiouns is of major importance because
(1) the highest heating rates and pressures on a body are experienced at the
stagnation point (2) any distributional shock layer solution because of its
parabolic nature is only as valid as its initial values and (3) the T.S.L.
equations along characteristics X = constant reduce to ordinary differential
equations like at the stagnation line. Thus by developing a stagnation

line solution an important problem is solved and a great deal of the work is
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completed which is applicable to the total shock layer problem. This is
primarily why the stagnation line problem has received a great deal of atten-

tion in the past decade.

The solution to the stagnation line (S.L.) problem by direct methods has
been approached in two ways. The work of Ho and Probstein Ref. 4.19 typifies
the stagnation region solutions which use expansions of the dependent variables
in X to obtain the stagnation and near stagnation line equations. The work
of Hoshizaki and Wilson Ref. 4.3 typifies the stagnation line solutions which
determine the stagnation line equations by formally taking the limit of the
terms in the T.S.L. equations at X = O using symmetry conditions. The latter

method is used in this development.

Let us first examine the global continuity equation in expanded dimen-

sional form.

0 -0 Pu or ~Pvor _
5-)-((pu) + (KpPv) + - ax + K = 0

oy oy T (4.88)
As X —= O the following limit is approached
| oar or /ar 8
lim T ax = lim 'a—')'<'2" X ‘[%"Ng—e—] = 0
Y0 %-+0 X=0 (4,89)
assuming a spherically shaped body at X = Q . Also, note that

(4.90)

_I__Q_f_=[ siv @ ]=_.__fs_______fs
r oy (Vic+y)snG | +xy 3

Using these conditions the global continuity equation can be rewritten.

Global continuity (S8.L.)

_0 (pu) 0 _ ,91)
ax('o | sy (KPV) + kpv = 0 .91

The species continuity equation can be rewritten by subtracting the global

continuity Eq. 4.52 from the left hand side of Eq. 4.53.

9Ci

3% + PVaC = a( RrAdy) + KA w, (4.92)

A
P Jy Y
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Noting that at X=O, U=0 and using Eq. 4.90 in Eq. 4.92 yields

Species continuity (S.L,)

Rpv & — ——Q-('?'di,y) - Ky + Kw; (4.93)

PVSY = -=(Jdiy) - “‘,%'“Ji,y + (4.94)

Now consider the X - momentum Eq. 4.54

Ao QU ~ Apy OU A _radP

rPuax + KFPVay + Kkrepuv r I
d oAUy _ 0 4

+ y(Kr/u.ay) KU ay(r/-l-)

By evaluating the above equation at X=0 , relatively little information

is obtained. Along the stagnation line U= 0 for all Y ; therefore

ou

7_‘57x.—.o= @) , (4.95)

Using this information in Egq. 4.54>yie1dé”

oP
X X=0

0 (4.96)

which agrees identically with the Rankine-Hugoniot equations for a symmetrical
shock (i.e. ¢ = (Q at X=0 ). The reduction of Eq. 4.54 to 4.96 along
the stagnation line yields the expected physical interpretation that no momen-
tum is transfered in the ¥- direction at the stagnation line. Rather than

using this reduced form of the momentum equation the rate of change of momentum
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in the X- direction is usually used. Therefore let us differentiate the
X - momentum equation with respect to X and determine its limiting form along

the stagnation line.

rA,oug‘i + ga;(-(rAPu)-g—x— + —;—(KFAPV)gt;
2
+ KYAPVgXLéy + KrAPV%yX— + U%(K"APV) = .o
AP _ QPO 00 AU, O
T xox t 3y lax < Mgy +Kr“6x6y)
- 5_a;(_(xu) -a%l-(rAIJv) - Kua-@m(rA/-‘)

to

For substitution into Eq. 4.98 the (S.L.) global continuity Eq. 4.91 may be

rewritten.

3 (4.99)

-1

( V) + 2I<v]

WDP_

oy
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Combining Eqs. 4.98 and 4.99 yields

X = Momentum (S.L.)
\ . ;
o) 0 (1 9Oz L vl 9L 0 %
3y (/.L VAY: ay(KPV) + KV) + [zxu va] ay(P‘ ay(K/"'v)
b L AL 0 % |
+ev) = kv 4 (D SE] (5 35 RPV) + &) -
.100

Pl f—(KPV) + )+

This is a third order inhomogenous ordinary differential equation where the
rate of change of the pressure gradient in the . X — directions is an unspeci-

fied function of y.

The y-nwmentum equation can be evaluated directly by substitution of
the stagnation line limit quantities. The S.L, normal momentum equation to

order 7;2

V = Momentum (S.L.)

where the terms in the brackets {:}>are the terms of order ;52. By dropping

these terms only terms of order FY remain. Since some of the terms of order
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FT have been expanded in Eq. 4.101 a few of the terms will combine.

Y- Momentum (S.L,)

It
I
Al

PKVW

>
=
+
n
X
<
s

(4.102)

It is obvious that either with or without the second order terms the y-—
momentum equation is second order, inhomogenous, ordinary differential equation
with variable coefficients. Given a solution to the energy equation (i.e.

an enthalpy or temperature profile) in principle the X~ and y" momentum equa-
tions could be solved for the normal velocity and the normal pressure gradient
given the rate of change of the pressure gradient in the X- direction as a

function of y.

The energy Eq. 4.57 can be reduced to the S.L. energy equation by inspec-

tion.

Q
I

3 ~
oH _  _( .k 90 [~0" J.
PV 3y (1+ ?)ay{?kay TE zh'd"” (4.103)
_RP Ni Di {div  Jiy _ o~ 0%y
N2 Z z M; !Dij ( Y]Mj YlMl )] ) oy

This is a second order, ordinary integrodifferential equation. It is interesting

to note that the S.L. energy equation has no viscous dissipation terms in it.

The S.L. conservation equation, obtained from the T,S.L. equations, are
a set of four ordinary differential equations in five unknowns (i.e. f> s
vV f{ s F) and (:i ). 1In addition to the conservation equations, the

caloric equation of state is available to provide another independent
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equation. The global continuity equation was used to eliminate the tangential
velocity gradient in the -momentum equations and therefore is not needed in

a solution of the S.L.equations. It can be used post priori to provide initial
conditions for the T.S.L equations. For a S.L.solution the rate of change

of the pressure gradient in the tangential direction must be specified as

a function of the normal direction. Comment on how this might be specified

is reserved until we have considered the reduction of the B.L., equations to

S.L. equations,

The first order boundary layer equations can be evaluated at the stagna-
tion line by keeping only first order terms and dropping normal curvature
effects in the thin shock layer S.L. equations. The resulting equations

are:

Global continuity (B.L., S.L.)

u _ _1L 0 .
X 3 ay(pv) (4.104)

Species continuity (B.L., S.L.)

pv-g%i = —a'%'(di,y) + Wi (4.105)

X — Momentum (B.L., S.L.)

(4.106)

y =~ Momentum (B.L., S.L.)

9P _ 9 (4.107)
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Energy (B.L., S.L.)
oH _ _ 0 [_, 9T J.
e = - sy Thy

_ _E__ Ni D'T ( \Jj.y _ J&y) _ aqR‘y
NE 22 W Dy (M vl - 5

(4.108)

e OP d*P
Since FOR ALL AT X = 0O L A . is a constant
oy O g Todx?

and may be evaluated at any y station. If the B.L. equations are evaluated
over the whole shock layer as done at the S,L.by Dirling, Rigdon and Thomas

Ref. 4.20 we may use the Rankine-Hugoniot relations to determine this constant.

From Eq. 4.81 the dimensional pressure behind the shock can be expressed

as

P, = (I—P)cos?¢ p, U2 (4.109)
differentiating we get

J?ifﬂa D 6‘#X2 2 2 2
axz —2(1-P) W/ [cos ¢ — sIN qS] Poo U% (4.100)

at X = 0, ¢ = O by symmetry. Therefore

°R _ — 04312 o112
3—Xix=o = -2(-F) —5;:&--0 = Uer R

In order to get the B.L, momentum equation into a more common form let us
express the rate of change of the pressure gradient in terms of the velocity
gradient behind the shock. From Eq. 4.75, the dimensional tangential velocity
behind the shock is

Ug = [smcﬁ cose + pcosg SN e:lué°
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from which we can obtain

ﬁﬂé = _Q__c_é 5 0€ - (4.112) .
X oo [§% + P51 -

The rate of change of the pressure'gradient, Eq. 4.111, can be rewritten in

terms of the velocity gradient.

PP\ _ .. oaomlfous) o s(0e) TP s
‘-_a_x-é._x.o ZP“(‘ P)[ \ax Uoop ] 1

X=0 a x X=0

If the shock is assumed to be concentric to the body at X =0 then

de)  _ 0% _
axx___o" 0 = X/ o | (4114

This gives a Newtonian velocity gradient used in many B,L. analysis. Instead
of applying this condition behind the shock most analyses apply this condition
at the edge of the B.L. which is at some intermediate station between the shock
and body. Using the concentric assumption Eq. 4.106 may be written

X — Momentum (B,L., S.L.)

(4.115)

It has been demonstrated that the thin shock layer and. boundary layer
equations can be reduced to ordinary differential equations along the S.L.
without resorting to similarity transformations. By doing so one important
difference in the resulting two sets has become apparent. The stagnation line
B.L. equations are completely specified by boundary counditions at the surface
and outer edge. However, an unknown function of y remains in the T.S.L.
equations which cdnnot be determined, without approximation, by outer and

inner boundary conditions. The undetermined function as stated previously is
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[o%P) _ _,
\axaxso F(Y)

o~

4.116)

This function like the rate of change of the shock angle is, by physical
interpretation, determined by the flow downstream. The downstream flow is

to be calculated by specifying these S$.L. conditions such that initial con-
ditions may be determined. The problem is complicated further by the fact
that thefe is no apparent theoretically based means of iterating on this
function such that it could be assumed and corrected until some satisfactory
convergence is obtained. 'The derivation of the S.L. boundary layer equations
demonstrates that té a first approximation the function F:(Y) is a constant
which can be evaluated at the shock by specifying the shock geometry. For
usual boundary layer problems the edge tangential velocity gradient is speci-
fied rather than the rate of change of the pressure gradient at the B,L,
edge. The velocity gradient has been correlated as a function of flight
conditions and body shape for many cases to be used in blunt body B.L. solu-

tions in order to specify this unknown downstream influence a priori.

In shock layer solutions the shock wave has been considered concentric
by Refs. 4.3, 4.4, 4.9, 4.10, 4.16, 4.18, 4.19, 4.20 and many others. Further-
-more, most of these analyses set the function, Eq. 4.116, equal to a constant.
The full extent of influence of these assumptions has not been determined for
radiation and ablation coupled flows although some radiative coupled results
are presented in Ref. 4.21. This is the point where engineering judgement
and or experimental results must be used in order to make the mathematical

model useful.
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SECTION V

TRANSPORT AND THERMODYNAMIC PROPERTIES

Transport and Thermodynamic Properties

The reliability of the flow field calculations in the current stufy
is highly dependent on the values used for the various transport and thermo-
dynamic properties. With this in mind, it is desirable to attain the ultimate
in accuracy; however, some complications do exist. There is very little
data in the temperature range of interest in this work, and the data that does
exist is subject to some scrutiny due to experimental difficulties at these
higher temperatures. Therefore, it becomes necessary to rely heavily on

rigorous kinetic theory for the estimation of these properties.

Generally, investigators in this area have resorted to the classical
Chapman-Enskog kinetic theory relations for estimation of the required trans-
port properties. The modification of these relationships to account for
polyatomic reacting mixtures results in very cumbersome equations. In some
cases, as will be shown, there are simplifications which can be applied
without substantial loss in accuracy. At this point, it becomes desirable
to optimize between accuracy and computation time. A wide variety of methods
' for estimation of these properties has been developed in just this manner.

In this work, an attempt has been made to combine some advantages of each

of these methods into one for optimum results to accurately compute high temper-
ature transport properties with reasonable computational convenience. The
properties to be discussed in this section are mixture - viscosity coeffi-

cients, thermal conductivity of polyatomic reacting mixtures, multicomponent

diffusion, heat capacity and enthalpy.

Viscosity Coefficients

From first order kinetic theory the coefficient of viscosity of a pure

monatomic gas can be given by the foliowing relationship from Hirschfelder,

et al., Ref. 5.9 (p. 528):

/MT

Hi x 100 = 266.93




where

—
I

temperature, °K

=
I

molecular weight of |

o == collision diameter of species i,l&

,Q,(..z’z) = Lennard-Jones collision integral for viscosity, a function
of reduced temperature, kc-|7€-.

m
[

characteristic interaction energy (a Lennard-Jones parameter)

The basic concepts of these collision properties have been discussed exten-

sively by various authors, Ref. 5.9, 5.12,

The coefficient of viscosity for binary mixtures can be calculated by a

gimilar equation, Ref. 5.9 (p. 529).

MM, T
M; + M
a® §if*)

/“Lij X 100 = 266.93 ’ g/cm sec (5.2)

where

Although the above formula was derived for monatomic gases, it has also

been found to be '"remarkably accurate for polyatomic gases', Ref. 5.3 (p. 23).

The calculation of viscosity for multi-component gas mixtures according
to rigorous kinetic theory results in the evaluation of the following equation,

Ref. 5.9 (p. 531):




[ ] @ e
L] e [}
® L] @

Frnix = — ‘ (5.3)

where
Y, Zo2Y Y, M; Mg 5 My
= i i + (5.4)
al Hri * % Fik (M + McF [ 3Aik M; ]
' #i
and

— (2,2)
A = QO A)'i(kl,‘) (5.5)

where the quantity SZ:&l) is the Lennard-Jones collision integral for diffusion.

Hij =

_ 2Ny MM 5 L
/‘Lij(Mi""Mj)z [3Aij Ex !] i#]j (5.6)

As will be subsequently discussed, IXH can be taken equal to ?% and the result

is that the non-diagonal elements vanish. Expansion of the remaining deter-

minants gives:
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Yz
Homix =) ~ ;/ | (5.7)
= X Lo ¥ XXRT
i i P M; Dy

ks

1%

It has been shown by Buddenberg and Wilke, Ref. 5.5, that Eq. 5.7 provides
a very good approximation to the rigorous analysis if the 2.0 is replaced by

1.385. The resulting equation is then

\ﬁZ
Homix =Z : (5.8)
Fi e PM; Dy
ke

The use of Eq. 5.8 now permits a simple estimate of mixture viscosities with-

out resorting to the evaluation of determinants.

Thermal Conductivities of Polyatomic Reacting Mixtures

The following equation is suggested by Hirschfelder, Ref. 5.9 (p. 534),

for calculations if species thermal conductivities of inert, monatomic gases

1.981 x 1074 JT/ M;

i g2 Qe

knmno (5.9)

where kxmxm is the thermal conductivity in g-cal/cm sec OK,-T is the absol-
ute temperature in °K, hﬁi the molecular weight of i,0j the low-velocity col-

- . , S252,2) : L :
lision diameter in , and is the reduced collision integral.

Polyatomic thermal conductivities can be obtained by multiplying Eq. 5.9
by an appropriate Eucken-type correction, Ref. 5.3, which accounts for the
transfer of energy between internal degrees of freeddm and translational

motion. Applying a Eucken-type correction, the thermal conductivity of

a polyatomic gas can be written as,
K = Kmoo 4+ Kiat (5.10)
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where kint is the thermal conductivity contribution due to the internal

degrees of polyatomic molecules.

Similarly the thermal conductivities of mixtures of polyatomic molecules

can be determined from

kmix== kmono--mix +  Kint-mix | (5.11)

ot

\

Using the same averaging procedure as in Eq. 5.8, e

| 4
K mono-mix =Z Yikin;;(-)r ” v v (5.12)
=l Y, + 13854 e ‘
Yo+ e yoln -

where Kj ... is calculated with Eq. 5.9.

In Ref. 5.10 (p. 366), Hirschfelder shows that

Kint-mix =Z 'th . , | (5.13)
. K

ii "M‘: Hi (5.14)

The quantity,l\hi, is defined by Eq. 5.5. Gomez, Ref. 5.8, reports that l&hi
is approximately constant for a wide range of temperatures (500-7000°K).

Typical values are Aj; = 1.10 in Ref. 5.11 and A;; = 1.13 in Ref. 5.1.
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Equations 5.4 through 5.7 can be combined to give

v _§_ YiM;lDii
kmix = _P_' %S-Z ° A”
T S IDn

=Y+ (1.385) % = A.. (le - 1D|.,)

IRZ Yi( --—lR)

k=l mlk

(5.15)

In reacting systems, thermal conductivities may be considerably higher
than in '"frozen" or "non-reacting" systems. This behavior has been discussed
in detail in a work by Brokaw, Ref. 5.4. Molecules that diffuse because of
concentration gradients transfer heat in the form of chemical enthalpy.

These gradients exist because the gas composition varies with temperature.
A gas may absorb heat by dissociating as the temperature is raised; heat is
then transferred as the molecules diffuse to a low temperature region and

recombine releasing the heat absorbed at the high temperature.

Rigorous equations have been derived that predict the thermal conduc-
tivity of reacting gas mixtures, Ref. 5.6. These equations become very in-
volved for anything but the simplest systems, which makes their use imprac-
tical. However, a simplification does exist. It has been shown in Ref. 5.6
that the ratio of the equilibrium thermal conductivity to equilibrium heat
capacity is '"nearly equal'" to the ratio of frozen thermal conductivity and
heat capacity. Using this property, the thermal conductivity of a reacting

mixture of polyatomic species could be estimated from

kr = k L ). (5.16)

f (:F#mb{

Diffusional Coefficients

From the first-order kinetic theory, binary diffusion coefficients are
expressible with the following relationship from Bird, et al., Ref. 5.3
(p. 539):



2M; M
P o'.;zﬂi(;")

T% (Mi + Mi)'é

D, = 2628 x107* em?/sec (5.17)

where Sligm) is the Lennard-Jones collision integral for diffusion. By com-

bining this equation with Eq. 5.5, the following relationship is obtained:

3, (M +M\%2
4 Té(zM;Mj) Aj
Po_ijzyﬂi(jzg)

IDij = 26.28 x 107 (5.18)

The mass diffusion fluxes are given implicitly in Hirschfelder, et al.,

Ref. 5.6 (p. 718), by the Stefan-Maxwell relations.

(5.19)

ENA S SO

y  $PDjL G ¢

where

=
|

mole fraction of species i
Jiy = mass flux by molecular diffusion

[%j = binary diffusion coefficient of species i and j

O
I

mass fraction of species i

Use of these relations with the boundary layer conservation equations is
awkward even in the absence of thermal diffusion effects as a result of the
implicit behavior of dhy on mole fractions and their gradients. Furthermore,
the Stefan-Maxwell relations cannot be arranged into an explicit relationship
for Jhy through introduction of K%j because the contributions of species i

and j to the binary diffusion coefficient are inseparable.

Tn Ref. 5.2, Bird showed that a bifurcation (separation) of the effects
of species i and j permits explicit solution of the Stefan-Maxwell relations
for Ji in terms of gradients and properties of species i and of the system

as a whole. The empirical approximation used for this simplification was
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D

Dy = (5.20)
R
where
tj = the coefficient of self diffusion of a selected reference species
EFJ == diffusion factors for species i and j

This relationship was also used by Kendall et al., Ref. 5.1, who found
that Bird's approximation provided many computational conveniénces (in par-
ticular, speed, storage, and input requirements). 1Its adaptation to an ex-
plicit solution of fhe Stefan-Maxwell relations is a strong point ian favor
of using the empirical relationship in Eq. 5.20 for determining diffusion

coefficients in the current study.

Using Eq. 5.20, the explicit solution of the Stefan-Maxwell relations

can be developed as shown in Appendix A. The result is expressed as

Wa 0Z; (Zi_Ci) alllz

_ _PD[ Y
Jis \P[My M Jy

)
#-9%]

(5.21)

where

Zi

MiYi/Fi‘PZ = MCVF;% (5.22)
\PI‘ = ? Y Fl = M ?(F}' Cj/Mj) | (5.23)
¥ ?M,Y,/F, M,X(C’/ﬁ) | (5.24)

C}/F}Z)(O'Fj aT) (5.25)

Ve

It was found by Kendall, Ref. 5.1, and confirmed by Gomez, Ref. 5.8, that
it oftem is consistent with the level of the approximation to consider Fi in-

dependent of temperature. Eq. 5.21 then becomes
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(5.26)

dy = - P'Dw_z_[aZa (z,-C) a%]

UM Loy * Vv, 0V

This relationship can be modified for later computational convenience to a

form which is analogous to Fick's Law. The resulting expression is

Jiy = —D;-g—%— (5.27)

where

(5.28)

_ PDV 0 Z (2,-C;) oV
O = \lx,Nf[aC; + =i ]

Using Eqs. 5.22 and 5.24 with the previous equation, it is shown in Appendix
C that

o - P el oo

~ Calculation of [) and Fﬂ :

The reference diffusion ecoefficient is simply the coefficient of self-

diffusion for the reference species.

3
T /2 Mref Aref

2,2
P CJ-rgf ‘Q'(ref )

D = 2638 x 107* (5.30)

where the variables are defined as previously done for Eq. 5.17. Here the
subscript "ref" designates a reference species. The Fﬁ are then determined
by a least-squares correlation of m)”, calculated by means of Eq. 5.17, for
all diffusing pairs in the chemical system of interest. Such a method of

correlation is deéveloped in Appendix B.

Thermodynamic Properties:

For the current study an expression of the thermodynamic data in poly-

nomial form is desired. For example:

v o




Cp
R

q, <+ OZT + 03T2 4+ e e e o

RT

a a
o + =T + 2T + eeee

(5.31)

(5.32)

(-]
(:p == pure component heat capacity at constant pressure for standard

state

°
Jé = gum of sensible enthalpy and chemical energy of formation of a

pure substance at standard state.

The constants for the preceding equations, calculated from polynomial curve-

fits of experimental data, can be obtained from a number of sources, Ref. 5.11

and 5.13. For higher temperatures, i.e. 8000-100,000°K, these
be obtained from curve-fits based on statistical thermodynamic

The relationships required for these calculations can be found
Refs: 5.14, 5.15, 5.16, 5.17, and 5.18. For gas mixtures, the

relationships are generally used, Ref. 5.9.

Copix = ?Yi Co, ‘+ TZ(%—“)(%%@)D

]

bo = 2 Y4
J

vV 10

constants can
considerations.
in many sources;

following

(5.33)

(5.34)
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SECTION VI

SUMMARY -

In the preceding sections the conservation equations were
developed with particular emphasis on maintaining generality in the
mass transport, chemical reaction, and radiation terms. The flight
regimes for hyperbolid entry and the corresponding fluid dynamic
behavior were discussed to provide a bases for an order of magnitude
analysis. This provided a sound foundation for the derivation of the
shock layer equation which govern the phenomenon of current interest.

The shock layer equations, which describe the flow between the body
and the detached shock wave, were stated both with and without second
order effects. Furthermore, the Classical boundary layer equations
were shown to be a simplified set of shock layer equations. The
shock layer and boundary layer equation which are valid for flow around
the body were reduced to stagnation line equations by taking appropri-
ate limits. The stagnation line equations were discussed in detail
because of their importance on their owmn right and because they provide
the needed initial condition for around the body solutions. In essence,
the problem has been defined and the pertenent equations derived.

In addition to the flow-field equations, boundary conditions at
the shock wave and on the body's surface were described. The boundary
conditions on the body's surface were left quite general. To speci-
ficately state theée conditions requires a mass, momentum and energy
balance at the surface. In this manner the flow field caIFulations
and the ablator response calculations are coupled.

Emphasis was placed on the derivation of the radiative flux di—

vergence term which appears in the energy equation. The radiative
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transfer was modeled using a plane slab approximation. Additional work
needs to be done to assess the role of curvature in determining the
radiative flux and flux divergence. Moreover, the existing solution
must be arranged in a more suitable form for calculations involving
both line and continuum transport. In order to explain and demonstrate
an appropriate radiative transport calculation scheme the line and com-
tinuum transport mechanisms must be explored theoretically. Further-
more, available data of line strengths and continuum absorption cross
sections must be compiled and put into usable form for computer program
usage.

A theoretical base has been developed for the calculation of mass
transport, momentum transport and thermodynamic properties. Prime
emphasis was placed on mass and momentum transport theory because of the
expected improvements in calculation procedures for these mechanisms.
Additional work must be done to examine and demonstrate the appropri-
ate procedures,

Based on this work and the current state of the art, a logical
sequence @f further developments can be stated as follows: First,

a stagnation line solution which includes the effects of diffusion,
finite rate chemistry and line-continuum coupled radiation could be
developed. This will provide both a worthwhile solution and a means

of checking out diffusion, chemistry and radiation calculation schemes.
Secondly, an around the body solution which includes these same mech-
anisms could be developed. The stagnation line solution should be used
as initial conditions for the around the body calculations. In both

the stagnation and around the body solution surface boundary conditions
could be specified by mass, moméntum, and energy balances at the surface

for direct compatability with material response solutions.
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APPENDIX A
DERIVATION OF SPECIES DIFFUSION FLUXES

AS AN EXPLICIT FUNCTION

This appendix contains the development of an explicit solution
to the Stefan-Maxwell equations for the diffusive mass fluxes in
terms of gradients and properties of the respective species and of
the system as a whole. The development of these equations has been
previously shown in much less detail by Kendall et al., in NASA

CR-1063. The Stefan-Maxwell equations are written as follows:

M N\ MY [ T T
;L; Zr,PlDti l_ C3 C;L_

The species mass fractions are related to the mole fractions by the

(A-1)

following relationship:

\CL [\4;‘; C_‘M (A-2)

Substituting Eq. A-2 and the bifurcation relationship, Eq. 5.20,

into Eq. A-1 gives

aYi Ci C,'MLEL_E- Jm — ____J_;‘i

—
—

1 s

which simplifies to (dropping the subscript y on Jj )
b

y
2V, _ M (c;a }‘“J__g _EL N\ GR (a-3)
2y pD \ M -~ M; M. L, M
N

multiplying each side of Eq. A-3 by Mi/Fi and summing over all i gives
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By noting that the sum of the mass fractions is unity and that the

sum of the diffusive fluxes is zero, the following relationship is

obtained from Eq. A-4:

i PDE M, 2V | |
J'F -5 = 5 (A-5)
— i -

3
Substitution of Eq. A-5 into Eq. A-3 gives

Y. :F ; Y, z
2 ,__c,E‘MaaY,_M ELN CCE
% Mj’ — F’: a}é FD MA Z‘:*.‘" MJ
Define the following new quantities: J
MY,
Z. = &4 (A-7) .
A F:‘(P:
=2 s
]
- MyY;
= 73 (A-9)
=) e
]
w_% <_C_:_1_ dF:) | (A-10)
¢+ / \EI\dT
3 :
Multiplying Eq. A-7 by zlzfand differentiating with respect to 7? gives
M; oY, MY OF _ ‘Vr + Z 2% (A-11)
ooy £ oy 3% “oy
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Rearranging Eq. A~11,

Y. _ vy Fi 22, F 2% Y. oF (A-12)
% " YNy “Em oy T E oy

Combining Eq. A-12 with Eq. A-6 gives

YF 2% | 2R 2 Y.3F  CRN M UE 22
M, 2% M 2% Ry M/ R M oy

2k 2%, Y, ar—'jJ M FJZQ_ME et

YoMy TR ey | oD MM,
Rearranging,
MIN GF 22 22¥ MN:OF | A\ 7%2%;
P2 >7 M ey B oy T Py
1
2 . MY.OF;
+C§ Z'-.__._.z_ + CA/ = 1 (A-14)
. foy ﬂ_/F—}' 913,
and
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The following terms in Eq. A-15 can be rewritten as indicated:

MY: OF _ C:iM aF; M OR 2T
oy BTy RIOT oy

27 3 B _
C, W = a%}:%-— c - (A-17)
j : ) : '

. (A-16)

M.Y; 2F,
CZ = 321& CM‘;{r % N (A-18)
5 ]

Substitution of Egqs., A-16, A-17 and A-~18, into Eq. A-15 gives

Iz"%[maq' M3y

P, 22,  E-C)3, 1 dF, 52\ 3T (aae)

whereJ;is the mass flux due to molecular diffusion.
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APPENDIX B
CORRELATION OF BIFURCATION FACTOR

AND BINARY DIFFUSION COEFFICIENTS

The least squares analysis which is developed in this appendix
is used to determine the best empirical constants for the bifurcation
relationship discussed in Section V. The bifurcation approximation

is written as (Eq. 5.20)

B

. (3-1)
":% E?F;
or in terms of logarithms,
1o = log[)— lo (B-2)
g 'Qg gD g EE
In Ref. 5.1, Kendall uses Fj in the form
B
F, = <M“‘ > (B-3)
L Mr‘e-?
Substituting Eq. B-3 into Eq. B-2 gives
log{[),= log D-{- B log (M) (B-4)
i Mre«f
which is of the form
= (8-5)
Yo = A+ BXy
Least squares analysis of this linear relationship results in
N N
N 2
B = (')(.k“‘ X)( ‘Lh—- L}V ? (”)(,k—— ’)L) (B-6)
=1 -




where N = all possible interactions of species present,

z
Mre$\

1%?1og (————~§ s k representing a particular combination (B-7)

of species i and j,

Y, =log 'Dij , . , , (B-8)
X =Z ’X'k/N - (B-9)
T = -10
¥ Z e,/ N T (8-10)

Having calculated B for a particular chemical system and a selected
reference species (dependent upon a secondary best-fit analysis), the

bifurcation factors are available from Eq. B-3.




APPENDIX C
SIMPLIFICATION OF THE RELATIONSHIP FOR EVALUATION

OF EFFECTIVE MULTICOMPONENT DIFFUSION COEFFICIENTS

The diffusive mass flux of species i can be calculated by means

of Eq. 5.26.

T = - PDY; | 22 _'_QZ;—C,;)B?Z
WM [y TOE oy

As will be shown it is more convenient to express this flux in terms
of an effective multicomponent diffusion coefficient and a concentration

gradient.

J.,=-D dt; , (c-2)
4 ‘ dzj,

where

P, DY 22 4 (2,- ¢C.) 3%,

= -3

D=%Mm | ac % oC ©
Recalling from Egs. 5.22 and 5.24 that

Z = MAY* _ MC; (C-4)
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Therefore the substitution Eqs. C-7 and C-8 into Eq. C-6 results
in the following relationship:
_ M _ M _ )
sz, FEM - FEUCH -MCR(E - X
o . ‘ 2 2 ’

aC, ‘:; w,

22, _ FikM - MC:

3C; £y )

Substitution of Eqs. C~4, C-8 and C-9, into Eq. C-3 and combining terms

gives
_ PPl -0 _C:( __M> (C-10)
D=% [ £ M\ F
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